§ 165. Пространственные скорости звезд и движение Солнечной системы

 

Если известно собственное движение звезды m в секундах дуги за год (см. § 91) и расстояние до нее r в парсеках, то не трудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью Vt и вычисляется по формуле

(12.3)

Чтобы найти пространственную скорость V звезды, необхо­димо знать ее лучевую скорость Vr , которая определяется по доплеровскому смещению линий в спектре звезды (§ 107). По­скольку Vr и Vt взаимно перпендикулярны, пространственная скорость звезды равна

(12.4)

Знание собственных движений и лучевых скоростей звезд позволяет судить о движениях звезд относительно Солнца, ко­торое вместе с окружающими его планетами также движется в пространстве. Поэтому наблюдаемые движения звезд складываются из двух частей, из которых одна является следствием движения Солнца, а другая — индивидуальным движением звезды.

Чтобы судить о движениях звезд, следует найти скорость движения Солнца и исключить ее из наблюдае­мых скоростей движения звезд.

 

 

Определим величину и направле­ние скорости Солнца в пространстве. Та точка на небесной сфере, к кото­рой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная ей точка — антиапексом. Чтобы пояснить прин­цип, на основании которого находят положение солнечного апек­са, предположим, что все звезды, кроме Солнца, неподвижны. В этом случае наблюдаемые собственные движения и лучевые скорости звезд будут вызваны только перемещением Солнца, происходящим со скоростью V¤ (рис. 224). Рассмотрим какую-нибудь звезду S, направление на которую составляет угол q с вектором V¤. Поскольку мы предположили, что все звезды не­подвижны, то кажущееся относительно Солнца движение звез­ды S должно иметь скорость, равную по величине и противопо­ложную по направлению скорости Солнца, т.е. — V¤. Эта ка­жущаяся скорость имеет две составляющие: одну — вдоль луча зрения, соответствующую лучевой скорости звезды

Vr = V¤cos q,

(12.5)

и другую, — лежащую в картинной плоскости, соответствующую собственному движению  звезды,

Vt = V¤ sin q.

(12.6)

Учитывая зависимость величины этих проекций от угла q, получим, что вследствие движения Солнца в пространстве лу­чевые скорости всех звезд, находящихся в направлении движе­ния Солнца, должны казаться меньше действительных на величину V¤. У звезд, находящихся в противоположном направле­нии, наоборот, скорости должны казаться больше на ту же ве­личину. Лучевые скорости звезд, находящихся в направлении, перпендикулярном к направлению движения Солнца, не изме­няются. Зато у них будут собственные движения, направленные к антиапексу и по величине равные углу, под которым с рас­стояния звезды виден вектор V¤. По мере приближения к апек­су и антиапексу величина этого собственного движения умень­шается пропорционально sin q, вплоть до нуля.

В целом создается впечатление, что все звезды как бы убе­гают в направлении к антиапексу.

Таким образом, в случае, когда движется только Солнце, величину и направление скорости его движения можно найти двумя способами: 1) измерив лучевые скорости звезд, на­ходящихся в разных направлениях, найти то направление, где лучевая скорость имеет наибольшее отрицательное значение; в этом направлении и находится апекс; скорость движения Солн­ца в направлении апекса равна найденной максимальной луче­вой скорости; 2) измерив собственные движения звезд, найти на небесной сфере общую точку, к которой все они направлены: противоположная ей точка будет апексом; для определения величины скорости Солнца надо сначала перевести угловое пе­ремещение в линейную скорость, для чего необходимо выбрать звезду с известным расстоянием, а затем найти V¤ по формуле (12.6).

Если теперь допустить, что не только Солнце, но и все дру­гие звезды имеют индивидуальные движения, то задача услож­нится. Однако, рассматривая в данной области неба большое количество звезд, можно считать, что в среднем индивидуаль­ные их движения должны скомпенсировать друг друга. Поэтому средние значения собственных движений и лучевых скоростей для большого числа звезд должны обнаруживать те же законо­мерности, что и отдельные звезды в только что рассмотренном случае движения одного только Солнца.

Описанным методом установлено, что апекс Солнечной си­стемы находится в созвездии Геркулеса и имеет прямое вос­хождение a = 270° и склонение d = +30°. В этом направлении Солнце движется со скоростью около 20 км/сек.