§ 90. Абсолютные и относительные методы определения экваториальных координат (a  и d  )

 

Экваториальные координаты светил могут быть определены либо абсолютным методом, либо относительным пли дифференциальным методом.

Определение координат абсолютным методом не опирается на какие-либо заранее известные координаты. При дифференциальном же методе прямые восхождения и склонения нескольких десятков или сотен звезд должны быть заранее известны. Эти звезды называются опорными.

а) Абсолютные методы. Определение склонений звезд абсолютным методом основано на соображениях и формулах § 14. Действительно, если измерить зенитное расстояние незаходящсй звезды сначала в момент ее верхней кульминации (zB ), о затем, через 12 часов звездного времени, в момент ее нижней кульминации (zH ), то будем иметь (см. формулы § 14)

zB  = d   j 

и

zH  = 180° — j  d ,

откуда

           

Таким образом, не зная координат других светил, мы получим склонение d   данной звезды и географическую широту j  места наблюдения.

После того как широта места j   будет многократно определена из наблюдений нескольких незаходящих звезд, взяв среднее арифметическое ее значение j 0 и измерив зенитное расстояние уже любой звезды в момент кульминации, получим склонение звезды по одной из следующих формул:

d   = j 0z, если звезда кульминировала к югу от зенита;

d   = j 0  + z, eсли звезда кульминировала к северу от зенита;

d   = 180 ° — j  z, если звезда наблюдалась в нижней кульминации.

Абсолютный метол определения прямых восхождений основан на том соображении, что из наблюдений Солнца можно найти его прямое восхождение a ¤, не зная прямых восхождений других светил.

Действительно,  пусть на рис. 67 QQ' — небесный экватор, EE' — эклиптика, A — точка   весеннего   равноденствия, e — наклонение небесного экватора к эклиптике, а С — положение   Солнца   на эклиптике в некоторый момент. Тогда дуга Cm склонение d ¤ Солнца, а дуга Am — его прямое восхождение a ¤.

 

 

Из прямоугольного треугольника СmA, согласно формуле (1.35), следует:

(6.13)

Следовательно, если известно склонение Солнца d ¤ в некоторый момент и угол e, то по формуле (6.13) можно вычислить прямое восхождение Солнца для этого же момента.

Измеряя зенитное расстояние z¤ Солнца в момент его верхней кульминации, т. е. в истинный полдень, мы для каждого дня наблюдений можем знать его склонение d ¤. Склонение Солнца меняется с каждым днем (см. § 16). Из наблюдений, произведенных около дней летнего и зимнего солнцестояний, можно определить его экстремальные значения, абсолютная величина которых и будет как раз равна углу наклона е эклиптики к экватору. С полученным значением e по формуле (6.13) можно вычислить a ¤ в момент истинного полудня для каждого дня наблюдений. Кроме того, если при измерении зенитного расстояния отмечать по часам момент T¤ прохождения Солнца через меридиан, то из уравнения

s = a ¤= T’¤ + u

(6.14)

будет известна также поправка часов и для каждого дня наблюдений и ход часов w (см. § 85).

Таким образом, абсолютный метод определения прямых восхождений сводится к следующему. Выбирается несколько (например, 30-40) звезд, расположенных более или менее равномерно вдоль эклиптики и небесного экватора, настолько ярких, чтобы каждую из них можно было бы наблюдать и днем, до или после наблюдений Солнца. Такие звезды называются главными или часовыми.

При наблюдении часовых звезд отмечаются моменты их прохождения через меридиан Т’1 , Т’2 , ..., Т’n . При наблюдении Солнца отмечается момент T¤ его прохождения через меридиан и измеряется зенитное расстояние z¤. По измеренному зенитному расстоянию Солнца вычисляется его склонение d ¤ и прямое восхождение сто для каждого дня наблюдений в моменты его верхней кульминации. По уравнению (6.14) вычисляются поправки часов на моменты наблюдений Солнца, а по ним — ход часов.

Далее, для каждого дня наблюдений Солнца и часовых звезд составляются следующие уравнения:

a ¤ = T '¤ + u.


 

(6.15)

a 1 = T '1 +  u1,

a 2 = T '2 + и2 ,

……………..

a n = T’n + un.

В первом из этих уравнений известны все величины, в остальных — только моменты прохождений звезд через меридиан T 'i . Прямые восхождения часовых звезд a i , и поправки часов и, пока не известны. Но поправки часов u i , для моментов кульминации каждой часовой звезды легко найти через известные поправку и и ход часов w, а именно:

u i = u + w (T’ i  — T’¤) .

Тогда уравнения (6.15) запишутся так:

a¤  = T’¤ + u,

a 1  = T '1 + u + w (T '1    T'¤),

a 2 = T '2 + u + w ( T '2  T'¤),

…………………………….

a n  = T’n + u + w (T ’n    T’¤)

Из этих уравнений и определяются прямые восхождения Солнца и часовых звезд абсолютным методом. При этом выгоднее производить такие определения по наблюдениям, проведенным при небольших значениях абсолютной величины склонения Солнца, т.е. около дней весеннего и осеннего равноденствий. В этом случае прямые восхождения получаются точнее.

При абсолютном методе определения прямых восхождений звезд наблюдения Солнца необходимы для фиксации положения точки весеннего равноденствия на небе относительно этих звезд. С этой целью вместо Солнца можно наблюдать любую планету Солнечной системы, если элементы ее орбиты известны с достаточной степенью точности. Наблюдения планет точнее, чем наблюдения Солнца. Особенно выгодны в этом отношении малые планеты. Условия наблюдений малых планет практически не отличаются от условий наблюдения звезд и поэтому результаты их наблюдений свободны от тех специфических ошибок, которые присущи наблюдениям больших планет и Солнца.

б) Относительные или дифференциальные методы. Относительные определения координат звезд сводятся к измерению разностей координат Da  и Dd  определяемых и опорных звезд.

Из наблюдений звезд в меридиане получают для каждой опорной и для каждой определяемой звезды моменты прохождения через меридиан T и Ti, и зенитные расстояния z и zi.

Так как наблюдения производятся в меридиане, то разность моментов прохождений звезд, опорной (T) и определяемой (Ti ), после учета хода часов есть разность их прямых восхождений, т.е.

Т — Ti  = a  a i, = Da i,

а разность зенитных расстояний есть разность склонений этих звезд, т.е.

zzi = d id  = Dd i    (кульминация к югу от зенита),

г — zi = d   d i  = Dd i   (кульминация к северу от зенита).

Из этих соотношений легко получаются искомые координаты a i и d i, определяемой звезды, так как a  и d  опорной звезды известны.

Здесь мы изложили только принципы определения экваториальных координат; на практике дело обстоит значительно сложнее.