
i

SOMobjects Developer’s Toolkit
Programmer’s Guide, Volume II: Object Services
SOMobjects Version 3.0

ii Programmer’s Guide for Object Services

Note: Before using this information and the product it supports, be sure to read the
general information under “Notices” on page iii.

Second Edition (December 1996)

This edition of Programmer’s Guide, Volume II: Object Services applies to SOMobjects Developer’s Toolkit
for SOM Version 3.0 and to all subsequent releases of the product until otherwise indicated in new releases
or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions;
therefore, this statement may not apply to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements nor that the
publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes are incorporated in new editions of the publication. IBM
Corporation might make improvements and/or changes in the product(s) and/or the program(s) described in
this publication at any time.

This publication might contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM Corporation intends to announce such IBM products, programming, or
services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only the IBM licensed program. You can use any functionally equivalent
program instead.

To initiate changes to this publication, submit a problem report from the technical support web page at URL:
http://www.austin.ibm.com/somservice/supform.html. Otherwise, address comments to IBM Corporation,
Internal Zip 1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM Corporation may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1996. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

iii

Notices

IBM Corporation may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICESES: This publication contains printed sample application programs in source language,
which illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these
sample programs in any form without payment to IBM Corporation, for the purposes of developing, using,
marketing, or distributing application programs conforming to the AIX, OS/2, or Windows application
programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: “© (your company name) (current year), All Rights Reserved.”
However, the following copyright notice protects this documentation under the Copyright Laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation
intends to make these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only
IBM licensed programs, products, or services can be used. Any functionally-equivalent product, program or
service that does not infringe upon any of the IBM Corporation intellectual property rights may be used
instead of the IBM Corporation product, program, or service. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM Corporation, are the user’s
responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries in writing to the:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department 931S
11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing
IBM World Trade Asia Corporation,
2-31 Roppongi 3-chome,
Minato-ku, Tokyo 106, Japan

This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

iv Programmer’s Guide for Object Services

Trademarks and Acknowledgements

AIX is a trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.
OS/2 is a trademark of International Business Machines Corporation.
SOM is a trademark of International Business Machines Corporation.
SOMobjects is a trademark of International Business Machines Corporation.
Windows and Windows NT are trademarks of Microsoft Corporation.

Contents iii

Contents
About the Programmer’s Guide for Object Services . vii
Who Should Use This Documentation . vii
Topics Covered . vii

Typographic Conventions . viii
Related Documentation. viii

Chapter 1. Overview of Object Services . 1
Understanding Object Services . 1

Relationship to Standards . 1
Managed Objects . 2

Object Frameworks . 3
Client Programming versus Class Programming . 3

Object Services Server . 4
The Object Life Cycle Model . 4

The SOM Life Cycle Model . 4
The DSOM Life Cycle Model. 4
The Object Services Life Cycle Model . 5
The Relationships between Objects and Object Services. 5

Chapter 2. Externalization Service . 7
Class Descriptions . 7
How to Make a Streamable Object . 7
How to Initialize Streamable Objects . 9
How to Use a Stream . 9

DSOM Considerations. 10
How to Externalize Objects with References . 11

Managing References using the Object . 11
Managing References using an Instance Manager. 11

When the Stream is Implicitly Reset . 12
Variances from the OMG Specification . 12

Chapter 3. Object Identity Service . 13
somOS::ServiceBase Class . 13

Intent . 13
Motivation . 13

Performance and Efficiency . 13
Solution Scenario . 14

Applicability . 15
Structure . 15

Chapter 4. Naming Service . 17
Introduction . 17
Abstract and Concrete Interfaces . 17
Concepts about Naming . 20

Naming Contexts. 20
Names. 21
Properties . 22

Roots and Namespaces . 23
Finding the Local Root Naming Context . 24
Using the Bind Process to Register with the Naming Service . 24
Resolving Names . 25
Creating Contexts . 26
Associating Properties to a Name Binding . 27
Listing and Getting Property Values . 28

iv Programmer’s Guide for Object Services

Searching the Name Space . 29
The Names Library . 30
BNF for Naming Constraint Language . 31

Chapter 5. Object Services Server . 35
Overview . 35
Role of somOS::ServiceBase . 37
Persistent versus Transient Object References . 38
Automatically Producing Persistent Object References . 40
Maintaining Strict CORBA Compliance . 40
Overview of the Object Life Cycle Model . 40
Managing the Object Life Cycle . 41
Service Initialization and Diamond Inheritance . 42
Configuration of Object Services Servers . 44

Parameters to Configure in the Server Configuration File. 44
Initializing the Server . 45

Initializing the Server Manually . 45
Initializing the Server from a Program . 45

Creating Your Own Server Program . 46
Registering the Server with regimpl. 49

Chapter 6. Security Service . 51
Concepts . 51

Principal. 52
Establishing an Authenticated Session . 52
Security Server and Security Domain . 52
Security Perspective . 53

End User . 53
Administrator . 55

Configuring a Server as Secure . 55

Glossary . 57

Index . 63

List of Figures v

List of Figures
Figure 1. Object Externalization Service Class Diagram . 7
Figure 2. somOS::ServiceBase Class Diagram . 15
Figure 3. Derivation for SOMobjects 3.0 Naming Service, Part One . 18
Figure 4. Derivation for SOMobjects 3.0 Naming Service, Part Two . 19
Figure 5. Example Name Graph . 21
Figure 6. Component and Compound Name Examples . 22
Figure 7. A Name Uniquely Identified by id and kind Fields . 22
Figure 8. Name Space Structure . 23
Figure 9. An Object Bound with the Same Name in Different Contexts . 28
Figure 10. Object Services Server is a Specialization of the DSOM Framework 36
Figure 11. Object Services Server Participates in the Exporting and Importing of

Object References . 37
Figure 12. Consequences of Transient Object References . 39
Figure 13. Multiple Inheritance and Diamonds . 43
Figure 14. Security Service in a SOM/DSOM Environment . 51

vi Programmer’s Guide for Object Services

About the Programmer’s Guide for Object Services vii

About the Programmer’s Guide for Object Services
The Programmer’s Guide for Object Services contains information about Object Services.
Object Services help you manage objects by letting you name them, operate them
securely, manage their persistence, and the like. The documentation covers concepts and
tasks related to constructing and using managed objects that make use of the SOMobjects
Object Services.

To build a robust, object-oriented application, you often have to be concerned with more
than just providing application function. You also have to be concerned with how to manage
objects. This is even more true in large distributed systems where there are thousands of
objects spread over hundreds of hosts. You need to be able to name objects and keep
track of them, ensure that only authorized users can operate on them, follow an orderly
approach to creating and deleting them, maintain their state persistently between sessions,
and so forth. The object services provide support for object management functionality like
this.

The SOMobjects Object Services implement a subset of the CORBAservices defined by the
Object Management Group (OMG).

Who Should Use This Documentation
This documentation is for software developers using Object Services, as well as for
developers who are providing specializations of object services interfaces.

You will find having the following background helpful:

• Familiarity with the OMG CORBA 1.1 and CORBA IDL specifications

• Familiarity with the OMG Common Object Services (also referred to as
CORBAservices), in particular the:

- Externalization Service

- Naming Service

- CosObject Identity Module (introduced in the Relationship Service)

• Knowledge of object-oriented principles

• C or C++ programming experience

• IBM SOM and DSOM knowledge, preferably with programming experience

• Familiarity with distributed systems management and object management concepts

Topics Covered
This documentation provides information about the SOMobjects Developer Toolkit for
Object Services. Topics covered include:

• Object Services Server

• Externalization Service

• Object Identity Service

• Naming Service

• Security Service

viii Programmer’s Guide for Object Services

Typographic Conventions
This book uses the following typographic conventions:

Bold
Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels and icons that you select.

Italics
Identifies parameters and variables whose actual names or values you supply. Also
identifies new terminology.

Monospace
Identifies examples of specific data values, examples of text similar to what you might
see displayed, examples of portions of program code similar to what you might write as
a programmer, messages from the system or information you should actually type.

Related Documentation
The following books contain information about, or related to, SOMobjects Object Services:

• Common Object Services Specification Volume 1 (OMG Document Number 94-1-1)

• CORBAservices: Common Object Services Specification (OMG Document Number 95-
3-31)

• Programmer’s Guide for SOM and DSOM

• Programmer’s Reference for SOM and DSOM

• Programmer’s Reference for Object Services

• Programmer’s Reference for Abstract Interface Definitions

Overview of Object Services 1

Chapter 1. Overview of Object Services
This section provides an overview and introduction to the SOMobjects Object Services.
This includes a discussion of the programming model for object services that spans
individual services.

Understanding Object Services
In general, the Object Services provide a combination of concrete and mixin classes. Mixin
classes provide your objects with the attributes and behavior that are needed for them to be
managed with object services. The concrete classes are used to instantiate the
distinguished objects that are used in support of managing your objects.

The SOMobjects Object Services consist of:

Externalization Service
The Externalization Service enables you to provide containers for data called streams,
and enables objects to write data to a stream or read data from a stream (that is,
externalize or internalize its state). DSOM uses the Externalization Service to
implement pass-by-value parameters.

Naming Service
The Naming Service enables you to name objects. You can assign a name to objects
within a particular context, and then instances of naming contexts can be organized
into a name hierarchy. During the configuration process, SOMobjects builds a default
global name tree and binds certain distinguished objects within that name tree.

Object Identity Service
The Object Identity Service enables you to determine whether two objects are exactly
the same. Objects are assigned an identity that can be used by the service to
determine if two objects are identical.

Security Service
The Security Service can be used to authenticate clients to secure servers. This is
useful for ensuring that client principals are indeed who they say they are, allowing the
principal’s identity (which can be obtained from the Principal object) to be used in
access decisions.

Relationship to Standards
With the exception of the Security Service, all of the SOMobjects Object Services are
implementations of the OMG CORBAservices: Common Object Services Specification
(OMG Document Number 95-3-31).

Note: The following terms might be used interchangeably in this documentation:

• interface and class

• instance and object

• operation and method

To ensure that polymorphism is preserved to its fullest, most of the SOMobjects
implementations of these services have been introduced as subclasses of the OMG
interfaces. Thus, the OMG interfaces are introduced as abstract base classes that have
been subclassed with a concrete implementation.

To further amplify this point, consider the Object Identity Service. OMG provides a
specification for the CosIdentity::IdentifiableObject interface. SOMobjects introduces this

2 Programmer’s Guide for Object Services

interface as an abstract base class; the interface is provided without any implementation.
SOMobjects subclasses the OMG interface and provides an implementation in the
subclass, for example, somOS::ServiceBase which inherits from CosIdentity::-
IdentifiableObject. The methods of CosIdentity::IdentifiableObject are overridden in
somOS::ServiceBase with a concrete implementation.

In this way, other implementations of the standard interface can be provided at a later date
without burdening objects that use the alternate implementation with the implementation
that SOMobjects provides in this release.

In several cases, SOMobjects provides additional operations in the implementation classes.
That is, having subclassed the OMG interface to provide an implementation, SOMobjects
has added other operations in order to make the implementation more robust and useful.
This is most notable in the case of the Naming Service. The naming interface in
ExtendedNaming::ExtendedNamingContext (a subclass of CosNaming::-
NamingContext) has been extended to support properties on name-bindings, and the
ability to search for bound objects based on their bound-property values. This gives the
Naming Services yellow-page characteristics.

It is important to note that while such extensions increase the utility of the service, these
extensions are not part of the original standard. Using them in your application will improve
the productivity and functionality of your application; however, it will be at the expense of
portability to different vendor ORBs. Because many other service specifications are being
standardized by OMG, there is a possibility that any extensions introduced in this version of
SOMobjects will become standardized over time, either as specified here or in some other
form.

Note: Read “About Programmer’s Reference for Object Services” on page ix in
Programmer’s Reference for Object Services. This chapter describes how
interfaces are documented relative to the standard specification and the concrete
implementation.

Managed Objects
With the Object Services being introduced in this version of SOMobjects, SOMobjects is
instituting the concept of managed objects. A managed object is one that can be managed
with one or more of the Object Services. This concept is important because, along with the
basic object model, it forms the basis of the programmer’s model for robust, distributed
objects.

The managed-object programmer’s model has at its heart several key principles, the most
important of which is to mask out the complexity of the underlying distributed information
system. This complexity becomes more evident when you consider the effect of scale. A
typical large-scale enterprise can have tens-of-thousands of host machines and users, use
millions of objects, perform millions of transactions, and handle hundreds-of-millions of
database records.

To exacerbate this situation, many institutions have highly heterogeneous information
systems (different hardware platforms, operating systems, communication networks,
middleware, database systems, and so forth) and a significant investment in legacy
information systems. And all of this typically is administered by just a hand-full of
administrators.

As such, it is essential that objects in the system be manageable and that they be
manageable both in concert with as well as independently of the underlying information
system infrastructure. These objectives are achieved with the following principles:

Overview of Object Services 3

• The SOMobjects Object Services are designed to be abstractions of important
information system functions. Object classes should be created with the mixin classes
provided with the Object Services described herein. This makes objects independent of
the underlying infrastructure.

• The SOMobjects Object Services are designed to be frameworks that can be tightly
integrated with different underlying infrastructures. In this way, existing, robust
information and infrastructure technology can be leveraged. More importantly,
administration of managed objects can be coordinated with administration of the
underlying information system.

Object Frameworks
An object framework has two distinct characteristics: it provides an abstraction of a
particular service to object programmers and it enables a federation of different
implementations of that abstraction. Thus, different service providers can produce
implementations of a service and, following the rules of the framework, can provide their
implementation alongside other implementations. An enterprise administrator or application
programmer can pick-and-choose the implementation that best meets their needs without
affecting the rest of their programs.

Object-oriented programming provides the initial condition for frameworks with
polymorphism. Polymorphism is the ability for different implementations to have the same
interface. Polymorphism is essential to a framework as it establishes a major element of
transparency to client programmers. However, polymorphism does not ensure the ability to
federate those implementations.

For instance, having different subclasses of a generic factory class ensures that each
factory implementation has the same interface (ignoring any additional methods that a
particular specialization might introduce). However, it does not ensure that the right factory
implementation is used at the right time. This latter characteristic is the direct responsibility
of the framework design and any programs that are intended to use the service framework.

The SOMobjects Object Services are designed as frameworks. As such, you will often need
to understand more than just the interface to the service, you will also have to understand
the framework’s rules of good behavior. If you create an instance of a managed object, you
need to examine the respective services for how objects are registered with the service
frameworks. If you create a managed-object specialization, you need to examine the
services for any distinguished operations that you necessarily must override or any
constraints on behavior that you introduce. If you invoke methods on a managed-object,
you must examine the services for any special method sequences that must be followed.

The framework concepts and tasks, and the rules of good behavior that come with them,
are described in fuller detail for each of the services in their respective chapters.

Client Programming versus Class Programming
It is important to differentiate between client programing and class programing. Client
programming means that you are invoking methods on an object: an instance of a class
provided by someone else. In this case, you are subject to the interface and any protocol
specified for the object you are calling.

Class programming means that you are providing a class or subclass, usually a particular
implementation or specialization. A client program creates an instance of your class and
invokes methods on it in accordance with any interface that you subclass or introduce. In
this case, you are subject to the interface of any parent classes that you subclass.

4 Programmer’s Guide for Object Services

Because the SOMobjects Object Services are frameworks, they introduce concrete and
abstract methods, and standalone and mixin classes. Most of the defined methods are
intended to be used by client programs. However, some of them are only intended to be
used within the framework itself. When this is the case and the method is defined publicly, it
is so that class programmers can specialize the method so that their particular class
implementation can be federated. Even though a public specification for the method is
defined, client programs should not invoke these methods directly.

Object Services Server
Based on the CORBA architecture, object identity in the context of a specific object
implementation is established by the object adapter. The object adapter in DSOM is the
SOMOA object which collaborates with an instance of SOMDServer. Because the
implementation of a managed object is heavily mitigated by the Object Services, a strong
relationship exists between the Object Services and the SOMDServer. To enable the
integration of multiple Object Services in a single managed-object class, SOMobjects is
provided with a specialization of SOMDServer that is specific to the Object Services. This
specialization is known as the somOS::Server or Object Services Server.

The Object Services Server should be used in any process in which any of the object
services are used. This primarily applies to server processes, but in some cases it might
apply to client processes as well.

There might be application function that must be performed as part of the server program or
server object in a server process. When this is the case, the somOS::Server can be
specialized in much the same way as a normal SOMDServer.

The Object Life Cycle Model
The life cycle model for an object governs the meaning and conditions by which an object is
created, managed, and destroyed. Each framework introduces nuances to the life cycle of
an object.

The SOM Life Cycle Model
The SOM kernel introduces a flexible object life cycle model. With SOM alone, without
using DSOM or Object Service frameworks, you can use the C language classNameNew or
C++ new macro, or the direct somNew method (or its variants) on the class object. This is
described in “Creating Instances of a Class” on page 72 of Programmer’s Guide for SOM
and DSOM. In addition, you can use initializers that you introduce. Then, when you no
longer need them, you use the somDestruct method to destroy objects. As the sole user of
any object, you need not coordinate with other possible users of that object. See “Initializing
and Uninitializing Objects” on page 195 of Programmer’s Guide for SOM and DSOM.

The DSOM Life Cycle Model
DSOM introduces some variations to SOM’s basic life cycle model. With DSOM you use
the Factory Service to locate a factory object. Unless you introduce a specific factory
object, the factory service normally returns a class object that you can manipulate with the
SOM life cycle model for creating objects. The implication of an object’s being distributed is
that it can be shared which means that more care must be taken when creating and,
especially, when destroying an object. Because you are presented with a proxy object

Overview of Object Services 5

instead of the actual target object in your client address space, you need to release it when
you are done with the object because some other client, sharing the target object, might still
need it. All the clients sharing an object must be coordinated to ensure that the object’s life
cycle is properly preserved while it is needed. Consequently, the life cycle model is more
complicated and restrictive. For more information see “Distributed SOM” on page 229 of
Programmer’s Guide for SOM and DSOM.

The Object Services Life Cycle Model
The SOMobjects Object Services place their own conditions on the life cycle model for
objects. This is driven mostly by the tendency for managed objects to have persistent state
or persistent references, and the need to coordinate the life cycle of the managed object
with the object services used. Each service imposes slight variations on the general model.
However, the general model is as simple as possible. As with DSOM, you should begin by
using the factory service to locate an appropriate factory. Your next step depends on the
type of factory you locate. If you are returned a class object, the process is more involved.
Essentially, you perform a somNewNoInit on the class object followed by
init_for_object_creation on the newly created object and any other initializers introduced
for that class of object. This object creation is described in detail in “Overview of the Object
Life Cycle Model” on page 40 and “Managing the Object Life Cycle” on page 41.

Although the object creation process involves many steps, you can make the process more
convenient for other client programmers by introducing a factory object that performs these
multiple steps within a single convenience method. In this case, you are responsible for
implementing the specifics of object creation and giving your convenience method a
signature that clients can use. You should register your factory with the regimpl, see “The
regimpl Registration Utility” on page 32 of Programmer’s Guide for SOM and DSOM.

When a managed object is persistent, it is subject to a sub-life cycle model governing its
presence in memory and coordinating its persistent state between memory and persistent
storage. However, this sub-life cycle is normally transparent to client programmers and
affects only system and class programmers.

The Relationships between Objects and Object Services
If you plan to use certain object services, you should explore how they affect the general
life cycle model. The following sections of this book can help you understand the
relationships between objects and object services:

• How to Initialize Streamable Objects

• How to Use a Stream

• Creating Contexts

• Object Services Server

• Overview of the Object Life Cycle Model

• Managing the Object Life Cycle

6 Programmer’s Guide for Object Services

Externalization Service 7

Chapter 2. Externalization Service
The Externalization Service provides containers for data called streams. A stream can
contain data for many objects. When you write an object’s data into the stream, it is called
externalizing the object. When you read an object’s data from the stream, it is called
internalizing the object.

The Externalization Service as provided with SOMobjects 3.0 is a partial implementation1

of the OMG Object Externalization Service specification (OMG TC Document 940915).
Specifically, only the classes in the CosStream module are provided.

Class Descriptions
The classes defined by the OMG specification all begin with Cos, for example
CosStream::Streamable. The OMG classes are provided in IDL files beginning with the
letters “omg”, for example “omgestio.idl”. The OMG classes are abstract and contain no
implementation. The IBM-supplied implementation of each of these classes is a subclass of
each OMG class and has the same name, except that it begins with the letters som, for
example somStream::Streamable. The IBM-supplied classes are provided in IDL files
beginning with the letters “som”, for example “somestio.idl”.

The following figure shows the relationships between the Externalization Service objects
and classes.

Figure 1. Object Externalization Service Class Diagram

How to Make a Streamable Object
To be externalized or internalized, the class of the object must inherit from the
somStream::Streamable class. The following example shows the IDL for an Item class

1. Some changes are made to the OMG definitions. See “Variances from the OMG Specification” on page 12

CosStream::StreamableCosStream::StreamIO

somStream::StreamIO

somStream::MemoryStreamIO

somStream::Streamable

somOS::ServiceBase

CosObjectIdentity::IdentifiableObject

8 Programmer’s Guide for Object Services

that inherits from somStream::Streamable. Item overrides both externalize_to_stream
and internalize_from_stream. Every subclass of somStream::Streamable that contains
data must override these and add code to write and read its data. If a class has more than
one parent that inherits from somStream::Streamable, then it must override
externalize_to_stream and internalize_from_stream even if it has no data. The
overridden method should call each parent’s method.

#include <somestrm.idl>
interface Item : somStream::Streamable {
 attribute string description;
 attribute float cost;
 #ifdef __SOMIDL__
 implementation {
 description: noset, noget;
 externalize_to_stream: override;
 internalize_from_stream: override;
 init_for_object_creation: override;
 somDestruct: override;
 releaseorder: _get_description, _set_description,
 _get_cost, _set_cost;
 memory_management = corba;
 dllname = “purchase.dll”;
 };
 #endif // __SOMIDL__
};

The following example shows the externalize_to_stream2 method implementation for the
sample Item class using C++ bindings. To make this sample code complete, the
environment needs to be checked for errors after every call. For clarity, the checks are
omitted here.

SOM_Scope void SOMLINK
externalize_to_stream(Item *somSelf,

 Environment *ev,
 CosStream_StreamIO* stream)

{
 ItemData *somThis = ItemGetData(somSelf);
 ItemMethodDebug(“Item”,”externalize_to_stream”);

 if (!((somStream_StreamIO*)stream)->already_streamed(ev,
 (CosStream_Streamable*)somSelf,_Item)) {

 stream->write_string(ev,somThis->description);
 stream->write_float(ev,somThis->cost);

Item_parent_somStream_Streamable_externalize_to_stream(somSelf,
ev,stream);

 }
}

The externalize_to_stream method first calls the already_streamed method. This
informs the somStream::StreamIO that the data of the specified object for the specified
class is about to be written. The already_streamed method returns TRUE if the data for
that part of the object has already been written (or read). The already_streamed method
is intended to solve the “diamond top” problem. The diamond top problem occurs when an
object inherits from a streamable parent class by more than one ancestor path, so that
when the object is externalized, the parent class externalize_to_stream method is called
multiple times. The use of already_streamed is optional. You can choose not to use it if
you know that none of the descendants of your class will inherit from it more than once, or if

2. For historical reasons, the method and parameter names use the word “stream”, but “streamio” would be more accurate.

Externalization Service 9

you don’t care that the data is written more than once, or if you use a different mechanism
to solve the diamond top problem.

Next, the externalize_to_stream method writes the data introduced by the class. You may
decide to not write some data. For example, some data is not important, such as temporary
flags or buffers. Next, the parent methods are called for all the parents that inherit from
somStream::Streamable. The order in which you write the data and call your parents is
not important. However, the internalize_from_stream method must read the data and call
its parents in the same order as the externalize_to_stream method writes the data and
calls its parents.

The following example shows the internalize_from_stream method implementation for the
sample Item class using C++ bindings.

SOM_Scope void SOMLINK
internalize_from_stream(Item *somSelf,

 Environment *ev,
 CosStream_StreamIO* stream,
 CosLifeCycle_FactoryFinder* ff)

{
 ItemData *somThis = ItemGetData(somSelf);
 ItemMethodDebug(“Item”,”internalize_from_stream”);

 if (!((somStream_StreamIO*)stream)->already_streamed(ev,
(CosStream_Streamable*)somSelf,_Item)) {

 if (somThis->description)
 SOMFree(somThis->description);
 somThis->description = stream->read_string(ev);
 somThis->cost = stream->read_float(ev);

Item_parent_somStream_Streamable_internalize_from_stream(somSelf,
 ev,stream,ff);

 }
}

The internalize_from_stream method is very similar to the externalize_to_stream
method. It is important to free any memory allocated for the attributes before they are read
from the somStream::StreamIO. The memory returned from the read_string method is
owned by the caller (according to CORBA memory management semantics) so it does not
need to be copied.

This sample object does not contain any references to other objects. For a discussion
about writing and reading object references see “How to Externalize Objects with
References” on page 11.

How to Initialize Streamable Objects
When you create a streamable object, you should initialize it using the
init_for_object_creation method. This method initializes the identity related attributes of
the object. If you use, for example, the somDefaultInit method instead, then the object will
still be usable, but the first time an identity related method (such as is_identical) is used,
the init_for_object_creation method will be invoked.

How to Use a Stream
The CosStream::StreamIO class (see “Object Externalization Service Class Diagram” on
page 7) is abstract, i.e. it does not implement any methods. The somStream::StreamIO
class declares the IBM extensions to CosStream::StreamIO, and it is also abstract. The

10 Programmer’s Guide for Object Services

somStream::MemoryStreamIO class is an implementation that uses a contiguous
memory block as the buffer to store the data.

The following program example creates and initializes a streamable object of the Item
class. It then creates a memory stream, externalizes an Item to the stream, and
internalizes the data into another Item object.

#include <somd.xh>
#include <somestrm.xh>
#include <item.xh>

void main()
{
 Environment ev[1];
 Item *item1, *item2;
 somStream_MemoryStreamIO *strm;

 SOM_InitEnvironment(ev);
 SOMD_Init(ev);
 item1 = (Item*)(void*)_Item->somNewNoInit();
 item1 = (Item*)(void*)item1->init_for_object_creation(ev);
 item1->_set_description(ev,”Coffee”);
 item1->_set_cost(ev,3.59);
 strm = new somStream_MemoryStreamIO;
 item1->externalize_to_stream(ev,strm);

 item2 = (Item*)(void*)_Item->somNewNoInit();
 item2 = (Item*)(void*)item2->init_for_object_creation(ev);
 item2->internalize_from_stream(ev,strm);
}

This example creates a second Item and internalizes it from the stream so that its state is a
copy of the original Item. You can use the _get_buffer method on the stream to get a copy
of the memory buffer so that you can store the data into a file or transmit it to another
process. You can use the _set_buffer method to restore the stream contents so that you
can internalize objects from it.

The somStream::MemoryStreamIO implementation stores the data in the format native to
the process in which the buffer resides. The code page of the character data, the endian3

format, and the floating point format can vary. If the buffer is sent to another process that is
using a different code page, endian format, or floating point format, the results are
unpredictable.

DSOM Considerations
The client application needs to be a DSOM server (peer-to-peer) if any of the streamable
objects or the stream itself exists in the client process. And, because of the callback
situations that can arise between the stream object and the streamable objects, you should
register your servers as multi-threaded servers (regimpl option -m on).

3. The endian format determines the order of the bytes for numeric data types: short, unsigned short, long, unsigned long, float, and
double. Big endian format stores the bytes from high-order to low-order. Little endian format stores the bytes from low-order to high-
order. Most Intel-based hardware uses little endian.

Externalization Service 11

How to Externalize Objects with References
It is often the case that your streamable object contains references to other objects. If these
references are a vital part of the object state, you need to decide how to handle them in the
externalize_to_stream and internalize_from_stream methods. You have basically two
choices, either the object itself can manage the references, or it can rely on an instance
manager to manage the references.

Managing References using the Object
In some cases, it is possible for the object itself to manage its references within the
externalize_to_stream and internalize_from_stream methods. To do this the object
must be able to write and read the data of the referenced objects. For instance, if the
referenced objects are streamable, the externalize_from_stream method of the object can
simply call externalize_to_stream on each of its references, and
internalize_from_stream can do likewise. If the referenced objects are not streamable,
the object may be able to use get/set methods to write/read their data itself. In the
internalize_from_stream method, the object must know the class of each referenced
object, or have some other means to re-create each referenced object.

One limitation of this design is that the referenced objects may not be shared by other
streamable objects. If two streamable objects have a reference to the same object, after
they are externalized and internalized, the two streamable objects would no longer share
the object; they would each have their own copy of it. If several streamable objects contain
references to one another in such a way that a cycle is formed, then calling the
externalize_to_stream method would cause an infinite loop.

Another limitation of this design is that the deep vs. shallow semantics of the externalization
is hard-coded into the object. It is not possible to sometimes externalize a deep copy of an
object, and to sometimes externalize a shallow copy of the same object.

Managing References using an Instance Manager
A much more flexible design is acheived when the streamable object uses an instance
manager object (or service) to handle the object references it contains.

The CosExternalization::Stream class, as specified in the OMG specification, can act as
an instance manager. In this design, the streamable object uses the externalize method to
write any contained references4. The externalize method maintains a table of every object
written to the stream so that if the same object is written more than once, a “repeated
reference” number is written to the stream. This internalize method works similarly. This
solves the problem of shared references and cyclical references. Furthermore, by
supplying alternate implementations of the CosExternalization::Stream class, the deep
vs. shallow semantics can be controlled independently of the streamable objects. The
CosExternalization::Stream class is not provided in this release.

The somOS::Server class can act as an instance manager. In this design, the streamable
object externalize_to_stream method uses the object_to_string method to convert each
of its contained references to strings, and it uses the write_string method to write each

4. Actually the streamable object call the write_object method of StreamIO which simply forwards the call to the externalize method
of the Stream.

12 Programmer’s Guide for Object Services

one to the stream. Similarly, the internalize_from_stream method uses the read_string
method and the string_to_object method to restore each of its references. This solves the
problem of shared references and cyclical references. However, it only provides shallow
semantics. The references must be persistent. See Chapter 5, Object Services Server
on page 35 for information about persistent references.

A third alternative is that you provide your own instance manager implementation.

When the Stream is Implicitly Reset
The reset method on somStream::StreamIO sets the buffer position to the beginning of
the buffer. If the buffer has unused memory, then it shrinks it using SOMRealloc. The
stream is implicitly reset whenever any of the following happens

• a read follows a write

• a write follows a read

• the set_buffer method is called

• the clear_buffer method is called

You only need to explicitly call the reset method if you want to write or read the same data
again, for instance, in error recovery.

Variances from the OMG Specification
The implementation of the Externalization Service has required some minor refinements
and variances from the OMG Object Externalization Service specification.

• Some classes such as somStream::StreamIO inherit from SOMObject instead of from
nothing. This is a requirement of the IDL compiler.

• The CosStream::StreamIO class does not have write_graph and read_graph
methods, because the Relationship Service is not provided.

• The CosStream::StreamIO class does not have write_object and read_object
methods, because the Life Cycle Service is not provided.

Object Identity Service 13

Chapter 3. Object Identity Service
This section describes the motivation, applicability, and consequences of using the
SOMobjects Object Identity Service.

somOS::ServiceBase Class
The somOS::ServiceBase class, when mixed in with other classes through inheritance,
provides the notion of identity.

Intent
Identity allows object instances to be distinguished from one another. Identity, in this
context, refers to the exact same instances as opposed to objects that may have the exact
same state (equality) but actually be two different instances of the same class.

Motivation
A basic premise in object-oriented technology is that objects are metaphors for real-life
things (for example, an instance of the Dog class is a software representative of a particular
dog). To the extent needed to differentiate real-life things (is this dog and that dog the same
dog?), it also is necessary to tell their object-oriented representatives apart.

Object references are, for most situations, inadequate for doing object comparisons.

Comparing object references:

• Relies on the Object Request Broker (ORB) implementation.

• Violates encapsulation by allowing clients to depend upon non-interface properties of
objects.

Object references are intended to be opaque values that are constructed by a particular
ORB implementation. The object reference produced for an object by one ORB may be
different than one constructed by another ORB for that same object. Conversely, two
different ORBs could produce the same reference for two different objects.

In the case where only remote objects or proxies are involved, it is possible to have two
different proxies that refer to the exact same object instance. Comparing object references
in this case returns False even though they refer to the same instance.

Performance and Efficiency
Other considerations, especially where remote or distributed objects are involved, are perfor-
mance and efficiency.

For instance, imagine a collection that supports the identify_any and identify_all
operations that take in an object reference as an argument and return the label associated
with the object in its collection. The collection must search through all of the objects in its
collection and compare each object with the object that was passed in. If the two objects
are the same object, it returns the label that is bound with that object in the collection. The
identify_any operation returns at this point, while the identify_all operation proceeds to
the next object in its collection until the entire list has been checked.

An issue that the collection must deal with is that it should not have to go out and touch
each and every individual object to perform the object comparison. Doing so has a

14 Programmer’s Guide for Object Services

significant potential performance impact, both in terms of communication latency going
across the network, as well as the potential overhead of resurrecting dormant objects that
99+ percent of the time are not the desired objects.

Another requirement is that if caching is employed to minimize any performance hit, cached
information should remain as small as possible (for example, caching 16 bytes for 100,000
objects requires 1.5 Mbytes of additional information in the collection).

Ideally, establishing identity should minimize the need for remote method calls and occur as
close to the client as possible. Any additional information cached near the client to help
establish identity should be as small as possible.

Solution Scenario
The somOS::ServiceBase class offers a solution. When mixed in with another class
whose instances need to be identifiable, it provides a unique identity for each object
instance. It provides a method used to report whether two objects are identical, as well as
an attribute that, when cached near the client, can be used for quick, first-order identity
comparisons near the client. This service can be used by local and distributed SOM objects.

When an instance of a descendant class of the somOS::ServiceBase class is created and
the init_for_object_creation method is called, a random number is generated and stored
in the constant_random_id attribute. The constant_random_id is not guaranteed to be
unique; its actual value is not as important as the fact that it is set at (or near) object
creation time and then never changes throughout the lifetime of the object. This value is
used as a first-order approximation of whether two objects are the same object; therefore,
the more random the value, the more efficient its use.

When an object is added to the collection and the object being added is identifiable, the
collection can get the constant_random_id from that object and store the information in
the collection. This serves as a cache for the object identity and results in fewer traversals
across the network to the objects.

When the identify_any or identify_all operation is invoked on the collection, the following
occurs:

1. The operation tests whether the passed object is identifiable; if not, the method request
is terminated.

2. The constant_random_id is retrieved from the passed object.

3. The operation iterates through each object in its collection. For each object, if the object
is identifiable, the collection compares the constant_random_id from the passed
object with the constant_random_id cached for the objects in the collection. If the
values are the same for both objects, the is_identical operation is invoked on the
passed object passing in the object reference for the object in the collection. The
results of this operation determine whether the two objects are the same.

4. For any object in the collection that is not identifiable, the collection ignores that object
and skips to the next one. Because the object is not identifiable and the passed object
is, this is a partial indicator that they are not the same object; they at least have
different metadata. If the object is not identifiable, there is no known way for the
collection to deduce its identity.

5. When both objects are identifiable, the is_identical operation could have been invoked
on either object passing in the other object as an argument. The is_identical operation
is invoked on the passed object because the passed object presumably had to be
resurrected to get the constant_random_id from it at the beginning of the process.
There is a good chance that it is active anyway by virtue of being the subject of the
identify_* operation.

Object Identity Service 15

6. The identify_any terminates at the first object that matches. The identify_all
continues through the entire list, finding any objects that match the passed object.

Applicability
If you need to consistently compare the identity of an object instance locally or remotely,mix-
in the somOS::ServiceBase class.

Members of collections or containers are good candidates for being identifiable objects
because most list-searching operations require an identity comparison.

Consider mixing in a base class, if one exists, to give all objects of a certain type standard
identity characteristics.

Structure
Figure 2 provides the class diagram for somOS::ServiceBase in the object modeling
technique (OMT) notation.

somOS::ServiceBase inherits from CosObjectIdentity::IdentifiableObject, which is an
abstract class. In other words, only the IdentifiableObject interface is inherited; no
implementation is inherited. somOS::ServiceBase overrides all of the inherited operations
from IdentifiableObject because it provides the actual implementation. The
constant_random_id is tagged with the no-data modifier in CosObjectIdentity::-
IdentifiableObject because somOS::ServiceBase provides the instance data for that
abstract attribute.

Figure 2. somOS::ServiceBase Class Diagram

Considerations
Some considerations of the somOS::ServiceBase mix-in class are as follows:

• A benefit is that it is easy to inherit the interface and implementation from somOS::-
ServiceBase to provide objects with the notion of identity. There is no need to override
any of the operations; somOS::ServiceBase provides a complete, ready-to-use
implementation.

16 Programmer’s Guide for Object Services

• Deciding whether or not to cache the constant_random_id is a speed-versus-size
trade-off. Consider the extra memory it requires per object versus the performance
penalty of a potentially remote is_identical method invocation. If there are not many
objects subject to identity operations or they occur rarely, it may not be necessary to
cache it.

Naming Service 17

Chapter 4. Naming Service
This chapter discusses the Naming Service, which gives users and programmers the ability
to refer to objects by name. These names can have a syntax and form that are readily
understood and manipulated by human beings. With the Naming Service, you can organize
computing resources so that they can easily be found, identified, and categorized either in
context or by explicit characterization.

Introduction
The Naming Service is the principle mechanism by which clients can locate objects they
intend to use. The interface is based on the Common Object Services Specification
Volume 1 (OMG Document Number 94-1-1), with enhancements to support properties and
constraint-based search.

The Naming Service provides methods to support binding (associating) a name to an object
and later resolving the bound name, setting and getting properties on names, and
performing searches through filters. The Naming Service provides filters that use properties
and constraint expressions. Filters allow clients to search for objects with certain
characteristics. For example, one could search for objects whose size is less than 24K
bytes.

The naming context is central to the Naming Service. A naming context is a collection of
name/object associations (bindings). The fundamental concept in the Naming Service is
that the entire name space is composed of naming contexts bound together to form a
directed graph. The naming context is itself an object; therefore, creation of an association
between two naming contexts is just a matter of binding one naming context (object) with a
name into the other naming context object. Naming contexts reside in a naming server.
Therefore, a Naming Service is simply a graph of naming contexts that reside in one or
more DSOM server processes. Client applications manipulate name bindings by means of
the naming context APIs through remote method calls.

Our enhancements introduce the notion of properties, which are name-value pairs. The
property name is a CORBA string, and the value can be of any CORBA type, including
constructed types such as structures and sequences. Therefore, you can create any
arbitrary property and assign it to a binding in the Naming Service.

The enhancements also introduce index methods with which you can create indexes on
specific properties in the context. Although an index increases the size of a context, it also
improves the performance of any searches that involve that property. Therefore, if there is a
tendency to use the same property, an index for that property may be helpful. You can
create indexes at any time before or after you add bindings that contain a particular
property. If bindings that contain the property already exist when the index is created, the
index is built from the existing binding information. Likewise, if bindings that contain an
indexed property are added later, the index is updated with the addition.

Abstract and Concrete Interfaces
The Naming Service consists of a hierarchy of interfaces with both abstract and concrete
implementations, which together provide an OMG-compliant Naming Service along with
IBM Naming Extensions that enhance the Naming Service functionality. Refer to Figure 3
and Figure 4.

18 Programmer’s Guide for Object Services

Figure 3. Derivation for SOMobjects 3.0 Naming Service, Part One

Naming Service 19

Figure 4. Derivation for SOMobjects 3.0 Naming Service, Part Two

The Naming Service includes enhancements to the OMG Naming specification. These
enhancements provide for increased control over naming context objects, primarily
Property support. Property support is the ability to manipulate dynamic name-value pairs
associated with the name-object bindings within a naming context. The IBM extensions to
the OMG Naming Service are defined within the ExtendedNaming Module, and they are
provided as abstract classes, along with the OMG CosNaming Module’s interfaces. Users
can subclass these abstract interfaces to provide their own concrete implementations, if
desired.

The ExtendedNamingContext interface is presented as an abstract class in the
ExtendedNaming module. An implementation that is both lightweight and supports all
features (such as properties and indexes) is provided in FileXNaming::FileENC. The
FileXNaming::FileENC implementation provides persistence of the naming graph by
creating files in the directory that the environment setting SOMDDIR points to. (For more
information on abstract classes, see Programmer’s Reference for Abstract Interface
Definitions.)

Some of the implementations of the ExtendedNamingContext interface may not support
all features, such as Properties, Sharing, and Indexes. A get_features_supported method
is introduced in the ExtendedNamingContext interface to allow users to efficiently
determine the features that an implementation supports.

20 Programmer’s Guide for Object Services

Concepts about Naming
A Naming Service is a graph of naming contexts that reside in one or more DSOM server
processes. Naming contexts, Names, and Properties are some of the important concepts
discussed.

Naming Contexts
Naming contexts are modeled after folders or directories, and names are modeled after
documents or files. The naming context is itself an object that contains name-object
associations (bindings). Because the naming context itself is an object, it can be bound to
another context, thus creating a name graph. Figure 5 depicts an example name graph. In
this example, the shaded circles represent Naming Contexts. The Leaf nodes are objects
bound into naming contexts. Naming context nc2 is bound in the root as “printers.” Objects
o1, o2 and o3 are bound as p1, p2 and p3 in nc2.

Given an initial root naming context, clients manipulate the naming graph by operating on
the naming context object. The ExtendedNamingContext interface allows the following
operations:

• Creating and deleting contexts

• Binding and unbinding names

• Resolving names

• Listing bindings

• Adding, updating, and deleting properties

• Resolving names with properties

• Searching based on predicates

• Listing properties associated with a name

Naming Service 21

Figure 5. Example Name Graph

Names
The Common Object Services Specification Volume 1 (OMG Document Number 94-1-1)
defines a name as an ordered sequence of name components. A Name component is an
IDL struct with the two elements id and kind. The following is the definition of a Name
defined in the CosNaming module:

typedef string Istring;
struct NameComponent

Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;

A name that has a single component is a simple name. A name that has multiple
components is a compound name. Names are always specified relative to the naming
context on which the method is performed. The differences between these two types of
names are illustrated in the name-tree example in Figure 6, where T is a name component
in naming context nc1 referring to the binding of naming context nc2. (In this example, nc1,
nc2, o1 and o3 are object identifiers, not names. They are provided to help clarify the
relationship of the objects involved in the example.) The compound name <T;U> is relative
to nc1 traversing through nc2 to o1. Notice that both T and U are name components
relative to their respective naming contexts; nc1 in the case of T and nc2 in the case of U.
Compound names are composed of multiple name component. Notice also that the starting
context is important: T relative to naming context nc1 refers to nc2; whereas, T relative to
naming context nc2 refers to o2.

22 Programmer’s Guide for Object Services

Figure 6. Component and Compound Name Examples

A name component has two parts: an id field and a kind field. The intent is to separate the
name of the object from the semantics of the object type. For example, two printer objects,
“moe” and “curly,” could have the kind field set to “printer”. The Naming Service does not
interpret or manipulate these values in any way. The unique identification of a name
requires both the id and the kind fields. Figure 7 illustrates this point. Although the kind
fields of objects 01 and 02 are identical, the Naming Service treats name1 and name2 as
two distinct names.

Figure 7. A Name Uniquely Identified by id and kind Fields

Properties
A property consists of a property_name and a property_value. The string property_name
names a property, and property_value is an any (the value assigned to the property).
Clients can manipulate properties individually or in batches using a PropertyList. The
following are the definitions of Property and PropertyList as defined in the
ExtendedNaming module:

typedef struct PropertyBinding_struct {
CosNaming::Istring property_name;
boolean sharable;

} PropertyBinding;

Naming Service 23

typedef struct Property_struct {
PropertyBinding binding;
any value;

} Property;
typedef sequence<Property> PropertyList;

Note: In this example, PropertyBinding contains the flag sharable that is no longer in
use.

Roots and Namespaces
SOMobjects produces a default name space at configuration time. That name space has
two roots: a local root context and a global root context. Actually, there is a local root
context in each host machine, but only one global root context in the workgroup.

SOMobjects organizes the name tree on the same principles as the UNIX file system; that
is, a single naming context is designated in every host as the local root. Because
everything is contextual, all absolute names are resolved from this root. In addition,
SOMobjects designates another naming context as the root of the global name tree.

The global name tree is a distributed name tree and is shared among all hosts in the
workgroup. The root context of the global name tree is bound into each local root context as
the “.:” name.

The default tree trunk for the name space provided with SOMobjects is depicted in Figure
8. This name tree is constructed when SOMobjects is configured (using som_cfg). You can
provide additional name contexts within or below this tree for your purposes, create entirely
independent name trees, or modify the tree provided. However, if you add your own
independent name tree, consider how other applications can discover that tree if they have
to refer to anything in it. Also, if you discard or change the name tree provided by
SOMobjects, certain distinguished objects are contained in the tree, and other services
might be affected if they are unable to locate those objects.

Figure 8. Name Space Structure

24 Programmer’s Guide for Object Services

Finding the Local Root Naming Context
Before applications can begin using the Naming Service, they must get a reference to a
naming context object. One can obtain an initial reference to a naming context object using
the ORB interface. The ORB interface supports methods that list services and obtain the
initial reference to the service. The resolve_initial_references method takes in an
ObjectId (a string) and returns an object reference. Clients are responsible for narrowing
the returned reference.

#include <somnm.h>
#include <somd.h>

ExtendedNaming_ExtendedNamingContext rootNC;
Environment ev;
...
rootNC = (ExtendedNaming_ExtendedNamingContext)
ORB_resolve_initial_references(SOMD_ORBObject, &ev, “NameService”);

The returned root naming context provides a starting point for applications to begin using
the Naming Service. You can obtain other naming contexts by resolving their names on the
root naming context.

When you are finished using the result of resolve_initial_references, invoke release, not
somFree.

Using the Bind Process to Register with the Naming Service
Once the application has resolved a naming context, it can use binding methods to name
objects in a naming context. The ExtendedNamingContext interface supports the
following eight methods to do binding:

• bind

• rebind

• bind_context

• rebind_context

• bind_with_properties

• rebind_with_properties

• bind_context_with_properties

• rebind_context_with_properties

The bind and bind_with_properties methods name an object in a naming context. Here, a
binding that names obj as ashoo is created in nc.

#include <somnm.h>

ExtendedNaming_ExtendedNamingContext nc;
Environment ev;
CosNaming_Name name;
Person obj;
...
name._length = name._maximum = 1;
name._buffer = SOMMalloc(sizeof(CosNaming_NameComponent));
name._buffer[0].id = "Ashoo";
name._buffer[0].kind = NULL;

CosNaming_NamingContext_bind(nc, &ev, &name, obj);

Naming Service 25

The following code fragment not only creates a binding, but also associates two properties
with the binding:

ExtendedNaming_PropertyList pl;

/* build the property list */
pl->_maximum = 10;
pl->_length = 2;
pl->_buffer = (Property *)SOMMalloc (pl->_maximum*sizeof

(ExtendedNaming_Property));
/* property one */

pl->_buffer[0].binding.property_name = "colorOfEyes";
/* set the property value */

pl->_buffer[0].value._type = TC_string;
ptr = (char **)SOMMalloc(sizeof(char *)) ;
*ptr = (char *)strdup("black");
pl->_buffer[0].value._value = (void *)ptr;

/* property two */
pl->_buffer[1].binding.property_name = "pet";

/* set the property value */
pl->_buffer[1].value._type = TC_string;
ptr = (char **)SOMMalloc(sizeof(char *)) ;
*ptr = (char *)strdup("Flakes");
pl->_buffer[1].value._value = (void *)ptr;

CosNaming_Context_bind_with_properties (nc,&ev,&name,inObj,pl);

The preceding methods raise an AlreadyBound exception if an object is already bound to
the specified name. Only one object can be bound to a particular name in a context. If you
want to replace the bound object with a different object for applications, use the rebind and
rebind_with_properties methods. These methods unbind the name and rebind the name
to an object passed as the argument:

SOMObject newObj;
CosNaming_NamingContext_rebind(nc, &ev, &name, newObj);

Because a naming context is also an object, it can be bound to another naming context.
Use the bind_context and bind_context_with_properties methods to bind naming
contexts. Naming contexts that are bound using these methods participate during the
resolution of Compound Names. Naming contexts bound using bind and
bind_with_properties methods do not participate in the name resolution process of
compound names.

When compound names are passed as arguments to the bind methods, the resolution
process first traverses the naming graph to the last naming context. The last component in
the compound name designates a simple name, which is then bound to the leaf context. A
NotFound exception is raised if any of the intermediate naming contexts cannot be
resolved.

A bind method that is passed a compound name is defined as follows:

namingContext --> bind (<c1; c2; c3 ... ; cn>, obj)
==> (namingcontext -> resolve (<c1; c2; ... ; cn-1>))

--> bind (<cn>, obj)

Note: The semicolon character is simply a notation used here and is not intended to imply
that names are sequences of characters separated by semicolons.

Resolving Names
The ExtendedNamingContext interface supports four methods to retrieve an object bound
to a name in a given context: resolve, resolve_with_property, resolve_with_properties
and resolve_with_all_properties. The id and the kind fields of the given name must

26 Programmer’s Guide for Object Services

exactly match the bound name. It is the responsibility of the application to narrow down the
returned object to the appropriate type. The following example shows how a previously
bound name, {“ashoo”, NULL} is resolved.

ExtendedNaming_ExtendedNamingContext nc;
Environment ev;
CosNaming_Name name;
Person retObj;
...
name._length = name._maximum = 1;
name._buffer = SOMMalloc(sizeof(CosNaming_NameComponent));
name._buffer[0].id = "ashoo";
name._buffer[0].kind = NULL;
retObj = (Person)CosNaming_NamingContext_resolve(nc, &ev,&name);

Names are always defined relative to a naming context. There are no absolute names. It is
important to realize that resolving a compound name implies traversing more than one
context in a naming graph.

In Figure 6, there are at least two ways to get to o1: by doing a compound resolve on nc1
or by doing a simple resolve on nc2. The following code fragment does a compound
resolve on the root:

name._length = name._maximum = 2;
name._buffer = SOMMalloc(sizeof(CosNaming_NameComponent)*2);
name._buffer[0].id = "T";
name._buffer[0].kind = NULL;

name._buffer[1].id = "U";
name._buffer[1].kind = NULL;

retObj = (Person)_resolve(root, &ev, &name);

The following code fragment does a simple resolve on nc1 (which is bound as "U" in nc2):

name._length = name._maximum = 1;
name._buffer = SOMMalloc(sizeof(CosNaming_NameComponent));
name._buffer[0].id = "U";
name._buffer[0].kind = NULL;

retObj = (Person)_resolve(nc, &ev, &name);

The Naming Service imposes no policies on the partitioning of the name space.
Applications can employ conventions so that they can meaningfully partition the name
space to allow good load balancing. Later sections discuss various schemes to partition the
name space.

The resolve_with_property method and its variations operate exactly like the resolve
method in returning the bound object. In addition, however, they also return the associated
property or properties.

Creating Contexts
To create a new naming graph or to extend an existing naming graph, you must first create
a naming context. The Naming Service provides several principal ways to create a new
context:

• Create an independent context object that you can later bind to an existing name tree
using the bind_context method on an existing naming context object. The
new_context method creates a new naming context in the same server as the context
on which this method was run.

Naming Service 27

• Perform a bind_new_context method on an existing naming context. This creates a
new context in the same server as the targeted naming context and binds it in the
targeted naming context.

The following code fragment shows how to create a new naming context using the
new_context method:

#include <somnm.h>
ExtendedNaming_ExtendedNamingContext *newNC;
Environment ev;
...
newNC = CosNaming_NamingContext_new_context(currentNC, &ev);

The bind_new_context method is a combination of bind and new_context. It is used to
create a new context and then bind it to the context on which the method is being invoked.
The following code fragment illustrates this:

CosNaming_Name name;
...
newNC = CosNaming_NamingContext_bind_new_context(currentNC,

&ev, &name);

Associating Properties to a Name Binding
With the current implementation of the Naming Service you can locate objects for use by
looking for objects having certain external attributes. Applications can add these
characteristics to a name binding through properties. Properties can be associated with
bound naming context objects as well as the bound objects. Use the following structures to
specify the properties for a binding:

typedef struct PropertyBinding_struct {
CosNaming::Istring property_name;
boolean sharable;

} PropertyBinding;

typedef struct Property_struct {
PropertyBinding binding ;
any value;

} Property;

Note: In this example, PropertyBinding contains the flag sharable that is no longer in
use.

You can associate a property with a binding in two ways:

• When a binding is created, applications can associate properties with the bindings. This
semantic is supported by the following methods: bind_with_properties,
rebind_with_properties, bind_context_with_properties and
rebind_context_with_properties.

• The second mechanism is through the add_property and add_properties methods.

Using these methods, clients can add properties after a binding has been created. If a
property is already defined, the property value is overwritten. The property structure has an
any defined as the property value. You must construct an any of the value before using
these methods. The following example shows how to construct a property and then add it to
a binding:

ExtendedNaming_ExtendedNamingContext nc;
Environment ev;
CosNaming_Name thisName;
Property prop;
long *ptr;

28 Programmer’s Guide for Object Services

...
prop.binding.property_name = "latencyTime";

/* set the property value */
prop.value._type = TC_long;
ptr = (long *)SOMMalloc(sizeof(long)) ;
*ptr = (long)9;
prop.value._value = (void *)ptr;

ExtendedNaming_ExtendedNamingContext_add_property (nc, &ev,
&thisName, &prop);

The binding name “thisName” is not required to have been previously bound. If “thisName”
does not exist, it is bound to OBJECT_NIL.

Properties are associated with Names, not with the bound objects. This means that an
object can be bound with the same Name in two different contexts having the same
property name and different property values. This is illustrated in Figure 9.

Figure 9. An Object Bound with the Same Name in Different Contexts

The o1 object is registered with the Naming Service in naming context nc1 as “ashoo” and
has one property with the name “loc” and the value “aus”. The same object is registered
under naming context nc2 with the name “ashoo” and the property “loc”. However, the
property value is “roch”.

Listing and Getting Property Values
With the list_properties method, applications can retrieve all the properties defined for a
name. The following example code shows how you can do this:

ExtendedNaming_ExtendedNamingContext nc;
Environment ev;
CosNaming_Name Name;
ExtendedNaming_PropertyBindingList pbl;
ExtendedNaming_PropertyBindingIterator pbIterator = NULL;

...
pbl._maximum = pbl._length = 0;
pbl._buffer = NULL;
howMany = 10;

_list_properties (nc, &ev, &name, howMany, &pbl, &pbIterator);

The list_properties method returns at most “howMany” properties in
PropertyBindingList pbl. If the name binding contains additional properties, a
PropertyBindingIterator is returned with the additional properties. The iterator is a remote
object that exists on the server in which the naming context that contains the bindings

Naming Service 29

resides. If the name binding does not contain additional properties, OBJECT_NIL is
returned.

With the returned iterator, you can iterate through the property list. You can iterate through
the bindings using the next_one and next_n methods. After you have finished using the
iterator, destroy it by running the destroy method.

The following example code demonstrates how to iterate through the property bindings and
how to destroy the iterator:

ExtendedNaming_PropertyBinding propBind;
somPrintf ("No. of properties: %d\n", pbl._length);
for (i = 0; i < pbl._length; i++)

printf ("[%s]\n", pbl._buffer[i].property_name);

/* step through the iterator */
if (!_is_nil(pbIterator, &ev)) {

while (ExtendedNaming_PropertyBindingIterator_next_one
(pbIterator, &ev, &propBind)){

somPrintf ("[%s]\n", propBind.property_name);
}

}
/* done with iterator */

ExtendedNaming_PropertyBindingIterator_destroy(pbIterator, &ev);

The ExtendNamingContext interface also supports the following three methods for the
retrieval of property values: get_property, get_properties and get_all_properties. A
PropertyNotFound exception is raised if any of the properties cannot be found in the
specified name bindings. The following is an example of usage of the get_property method:

Property prop;
...
_get_property(nc, &ev, &name, “pet”, &prop);

The returned Property prop contains the property name and its value.

Searching the Name Space
One approach to providing filters is through properties and constraints. Client applications
can use constraint expressions to describe the characteristics of the bound object they are
seeking. Constraints are expressed in a Constraint Language, which provides operators
and symbols that allow complex building expressions involving properties and their values
to be built. The BNF for the constraint expression is provided in “BNF for Naming Constraint
Language” on page 31.

Three methods on the ExtendedNamingContext interface provide the search functionality:
find_any, find_all and find_any_name_binding. These methods accept a constraint
string that serves as the predicate for the search. Although the constraint grammar is quite
flexible, it has two limitations:

• Property names can contain only standard alpha-numeric characters (plus a number of
special characters, but no spaces).

• The operators can operate only on basic data types.

Although you can store complex data structures and ad hoc property names in a name
binding, you can perform searches only on simple IDL data-types and well-formed property
names.

In the following example, a constraint describes an object that costs less than $5, a
MachineType of PowerPC, and created on Server Moe:

constraint = “cost < 5 and MachineType == ‘PowerPC’ and Server ==

30 Programmer’s Guide for Object Services

‘Moe’”

Assuming that property values are defined for these property names, you can use the find
methods to locate the name bindings that satisfy the specified criteria. The find_any
method returns the first bound object that satisfies the constraint in the context this method
is run on in a naming context not more than the specified distance from the target naming
context. The search is not deterministic in the sense that multiple invocations does not
always return the same result. If none is found, a BindingNotFound exception is raised,
and OBJECT_NIL is returned.

ExtendedNaming_ExtendedNamingContext nc;
Environment ev;
string constraint;
unsigned long distance;
distance = 2;
constraint = "MachineType == 'PowerPC' and Frequency < 65";
outObj = _find_any(nc, &ev, constraint, distance);

There is also support to query and get all bindings that satisfy the constraint. This method
returns a CosNaming::BindingIterator object if there are more qualifying bindings than
"howMany" are found. The following example illustrates this. If more than 100 bindings
satisfy the specified constraint, 100 bindings are returned in “bl” and the remainder in the
iterator “bi”. The iterator resides in the server process.

howMany =100;
_find_all(nc, &ev, constraint, distance, howMany, &bl, &bi);

A BindingNotFound exception is raised if no name-bindings are found to satisfy the given
constraint.

The ExtendedNamingContext interface also introduces some index methods with which
you can create indexes on specific properties in the context. Indexes can greatly improve
the performance of searching in a context. However, maintaining an index has some
negative impact on the performance of setting property values and requires additional
storage. Therefore, creation of indexes is left under user control. Clients can use the
add_index, remove_index and list_indexes methods to manipulate indexes.

The Names Library
It is expected that the representation of names evolves to accommodate other services. To
allow names to evolve without affecting existing clients, a names library is provided. The
names library supports the two interfaces LNameComponent and LName. These
interfaces implement names as pseudo-objects. Because pseudo-objects cannot be
passed across IDL interfaces, methods are provided to convert a name pseudo-object to a
structure, and a structure to a name pseudo-object.

The following example demonstrates how you can use the names library to build and
manipulate names. This example builds a name with two components: ({"usr", "dir"}, {"lib",
"dir"})

#include <somnm.h>
LName anLName;
CosNaming_Name aName;
LNameComponent *lnc;
Environment ev;
ExtendedNaming_ExtendedNamingContext *nc;
CosNaming_Binding bnd;
...

/* create an lname pseudo-object */
anLName = create_lname();

Naming Service 31

/* create the first name component object */
lnc = create_lname_component();
_set_id(lnc, &ev, "usr");
_set_kind(lnc, &ev, "dir");

/* insert first component */
_insert_component(anLName, &ev, 0, lnc);

/* create the second name component object */
_set_id(lnc, &ev, "lib");
_set_kind(lnc, &ev, "dir");

/* insert second component */
_insert_component(anLName, &ev, 1, lnc);

/* cannot use anLName as an argument to any of the
Name Service apis. Need to convert the pseudo-object
created into a name structure */

aName = _to_idl_form(anLName, &ev);

/* invoke a naming api */
outObj = _resolve(nc, &ev, &aName);

Here is a fragment of code that creates a name pseudo-object.

/* invoke another method that returns a name structure */
_find_any_name_binding(rootNC, &ev, constraint, (unsigned

long)1, &bnd);

anLName = create_lname();
_from_idl_form(anLName, &ev, &(bnd.binding_name));

/* print the library name object */
somPrintf("<");
for(i=1;i<=numComps;i++) {

lnc = _get_component(anLName, &ev, i);
/* print id and kind */

somPrintf("[%s/%s]", LNameComponent_get_id(lnc,ev),
LNameComponent_get_kind(lnc,ev));

_somFree(lnc);
if (i<numComps)

somPrintf(";");
}

The LName and the LNameComponent objects are transient. When applications use
create_lname or create_lname_component functions, the library name objects are
created locally and not in the name server. This means that the lifetime of these objects is
limited by the lifetime of the client process that created them.

BNF for Naming Constraint Language
The Naming Service allows searches based on properties attached to a name object
binding. Service providers register their service and use properties to describe the service
offered. Potential clients can then use a constraint expression to describe the requirements
that service providers must satisfy. Constraints are expressed in a constraint language.
Using the constraint language, you can specify arbitrarily complex expressions that involve
property names and potential values.

The constraint language described below is excerpted from Appendix B of the COSS Life
Cycle Services specification. It has been slightly modified to support future enhancements.

ConstraintExpr : Expr
;

32 Programmer’s Guide for Object Services

Expr : Expr "or" Expr
| Expr "and" Expr
| Expr "xor" Expr
| '(' Expr ')'
| NumExpr Op NumExpr
| StrExpr Op StrExpr
| NumExpr Op StrExpr
;

NumExpr : NumExpr "+" NumTerm
| NumExpr "-" NumTerm
| NumTerm
;

NumTerm : NumFactor
| NumTerm "*" NumFactor
| NumTerm "/" NumFactor
;

NumFactor : Num
| Identifier
| '(' NumExpr ')'
| '-' NumFactor
;

StrExpr : StrTerm
| StrExpr "+" StrTerm
;

StrTerm : String
| '(' StrExpr ')'
;

;
Op : "==" | "<=" | ">=" | "!=" | "<" | ">"

;
Identifier : Word

;
Word : Letter { AlphaNum }+

;
AlphaNum : Letter

| Digit
| "_"
;

String : "'" { Char }* "'"
;

Num : { Digit}+
| { Digit}+ "." { Digit}*
;

Char : Letter
| Digit
| Other
;

Letter : a | b | c | d | e | f | g | h | i
| j | k | l | m | n | o | p | q | r
| s | t | u | v | w | x | y | z | A
| B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S
| T | U | V | W | X | Z
;

Digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;

Other : <Sp> | ~ | ! | @ | # | $ | % | ^ | &

Naming Service 33

| * | (|) | - | _ | = | + | [| {
|] | } | ; | : | " | \ | | | , | <
| . | > | / | ?
;

Sp : " "
;

The following precedence relations hold in the absence of parentheses, from lowest to
highest:

• or and xor

• and

• not

• + and -

• * and /

• Otherwise, left-to-right precedence

The following are some example constraints:

(1) name == 'ashoo'
(2) name == 'ashoo' and pet == 'flakes'
(3) Fee <= 5 or LowFreq >= 20
(4) DeviceType == 'Car' and Cost < 30000 and

color == 'white' and Year > 1990

34 Programmer’s Guide for Object Services

Object Services Server 35

Chapter 5. Object Services Server
The Object Services Server is responsible for instituting persistent object references and
managing object metastate on behalf of the SOMobjects object services. It handles the
majority of this responsibility transparently to client applications or class programmers.
However, there are provisions in the server that you can or must be involved in, depending
upon the nature of your application and managed objects.

For instance, if your objects are not created with a factory, you can ensure that persistent
references are automatically created for your objects by sub-classing from
somOS::ServiceBasePRef. Likewise, if you want your class to differentiate between object
creation and object reactivation during initialization or similarly between object passivation
and object destruction, override the somOS::ServiceBase initializers and destructors.
Finally, if your client application wants to manage object passivation, invoke
passivate_object at the right time.

For the most part, if you are only writing client applications, your interest is limited. You only
have to ensure that the Object Services Server is specified in the Implementation
Repository for the server process where you want to create or operate on managed
objects, and then to follow the Life Cycle model prescribed by the server. If you are a class
programmer specializing a managed object class, you probably should learn about the
Object Services Server and any special conditions that you must support in your class
implementation.

Before reading this chapter, it is important that you read and understand the DSOM
framework and its concepts of server processes. Also, it is a good idea to read and
understand the concept of a managed-object as described in “Managed Objects” on
page 2. In particular, remember that a managed object is merely any object subject to the
SOMobjects object services.

Overview
The Object Services Server is a specialization of the DSOM framework that supports the
specific needs of the SOMobjects object services. As a server, it participates with the
DSOM object adapter to export and import object references. With its unique knowledge of
the object services frameworks, it participates in the handling of object metastate.

The main elements of the Object Services Server are:

• the server-class

• an object services base class

• the server program

At the machine, the Object Services Server comes into existence as a server process when
the server program is executed. Essentially, the Object Services Server (program) contains
the Object Services Server object and managed object. The Object Services Server
exploits the DSOM framework and, therefore, relates to certain other DSOM components;
specifically, to the DSOM object adapter and DSOM object references. The inheritance
relationships for the Object Services Server components are depicted in Figure 10. The
Object Services Server is a specialization of SOMDServer. All managed objects within the
server should be derived from an object service mix-in class, which, in turn, should be
derived from somOS::ServiceBase. An object reference is an instance of SOMDObject.
And the DSOM Object Adapter is an instance of SOMOA, which is derived from the Basic
Object Adapter (BOA).

36 Programmer’s Guide for Object Services

Figure 10. Object Services Server is a Specialization of the DSOM Framework

The Object Services Server participates in the exportation and importation of object
references. Exportation and importation is accomplished by specializing SOMDServer and
providing unique implementations of the somdRefFromSOMObj and
somdSOMObjFromRef methods. This process is depicted in Figure 11. When an object is
exported from the server process, the SOMOA invokes somdRefFromSOMObj on the
Object Services Server object to map the object to an object reference. Likewise, when an
object reference is imported into the server process, the SOMOA invokes
somdSOMObjFromRef on the Object Services Server object to map the object reference
back to the in-memory object.

Object Services Server 37

Figure 11. Object Services Server Participates in the Exporting and Importing of Object References

The Object Services Server is capable of maintaining object references persistently, which
is useful for objects with persistent state. The Object Services Server manages any
metastate that relates to the persistent object as part of the object’s reference data keyed
by the object’s reference. Thus, the Object Services Server is capable of automatically
reactivating any passivated objects when they are first referenced.

Role of somOS::ServiceBase
The somOS::ServiceBase is the base-class for the Object Services Server. All managed
objects must be derived from somOS::ServiceBase in order to be managed properly by
the Object Services Server. The somOS::ServiceBase introduces behavior to the
managed object that enables the server to manage it.

In most cases, you do not have to be concerned about whether your managed object is
derived properly from somOS::ServiceBase. All mix-in classes offered by the object
services already are derived from somOS::ServiceBase. The only thing you must do is
explicitly create persistent object references when you create instances of your class. This
is discussed in more detail as part of “Automatically Producing Persistent Object
References” on page 40.

In addition, the Object Services Server introduces a life cycle programming model that is
more specific than the more general model supported by SOMobjects. This model is
supported by the somOS::ServiceBase with the introduction of the following initializers
and destructors:

• init_for_object_creation
• init_for_object_reactivation
• init_for_object_copy
• uninit_for_object_destruction
• uninit_for_object_passivation
• uninit_for_object_move

38 Programmer’s Guide for Object Services

As you can see, the somOS::ServiceBase introduces initializers and destructors whose
intentionality is explicit. Explicit intentionality reduces any ambiguity that can occur during
the object life cycle. The object Life Cycle Model supported by the Object Services Server
and its impact on class programmers is discussed in more detail in “Overview of the Object
Life Cycle Model” on page 40.

Finally, the somOS::ServiceBase provides an implementation of the Object Identity
Service. Object Identity provides several methods that allow object instances to be
distinguished from one another. For more information about object identity, see Chapter 3,
Object Identity Service.

Persistent versus Transient Object References
As defined by CORBA, an object reference is a value that identifies an object. In
SOMobjects, object references are themselves objects that represent the identity of an
object in an exportable manner; that is, an object reference is distinguished from an object
pointer. Such a distinction allows an object reference to be marshalled and communicated
across the distributed system without losing the identity to the object (as might occur if the
object pointer were exported).

The object reference is an indirection to the object that it identifies. In addition, it is
transparently inserted into the reference path for remote clients in the form of a DSOM
proxy. As previously stated, the server-object is responsible for mapping between the
object pointer and the object reference for an object.

To uniquely identify an object in a way that is address-space neutral, the server-object
normally creates a key to the object. The key is embedded in the object reference and is
used to map the reference to an object pointer.

With regard to the lifetime of the mapping, the server-object may or may not retain mapping
information indefinitely. This property defines the essential difference between transient and
persistent object references. Specifically, if the server-object retains the mapping
information beyond the lifetime of the server process in which the referenced object exists,
the reference is persistent. Conversely, if the mapping is lost when the server exits, the
object reference is transient.

To understand this more completely, consider how DSOM manages its transient
references. Refer to Figure 12, and assume that a client in process A has a reference to an
object in DSOM Server process B. In scene 1, the client object in process A has a pointer
to a proxy to object M. The proxy is an object reference that can be marshalled over the
network to process B. The server-object is responsible for mapping the object reference to
a pointer to object M within process B.

In scene 2, process B is exited. Any transient state in process B, including the mapping of
object references to pointers is lost. The proxy to M still contains information for locating
DSOM Server process B, although process B no longer is executing.

In scene 3, DSOM Server process B is restarted. The proxy to M can relocate DSOM
Server process B; however, because the transient mapping to the pointer to M has been
discarded, the server-object cannot re-establish addressability back to M. Even if another
object is reinstantiated where object M resided, its identity is in the object reference, and
the new object is not M. Likewise, even if M is a persistent object and is reactivated
somewhere else in memory, it is difficult to reassociate the reference with the object
because the identity of object M is in the object reference.

More specifically, DSOM carries the address of object M as part of the identity of the object
in its reference. Therefore, if M is removed from memory, its identity refers to an empty

Object Services Server 39

memory location. Worse, if another object is created in M’s old memory address, its identity
refers to the wrong object, even if the process itself is not exited.

It is important to retain information about object reference mapping persistently and in a
manner independent of the memory address of the object. When a server object retains the
mapping between an object reference and an object persistently, the references it produces
are called persistent object references.

The Object Services Server supports both transient and persistent object references. You
can instruct the server to produce a persistent object reference for a given object by
invoking the make_persistent_ref method on the server-object. You can invoke this
method from either within the object itself, or outside the object by some other object; for
example, from an object factory. Invoking this method instructs the Object Services Server
to build an entry for the object in its metastate database.

Figure 12. Consequences of Transient Object References

This function provides the Object Services Server with some important capabilities. Objects
created within the server can be removed from memory (passivated) and automatically
reactivated the next time any method request is invoked on the object. You can use the
metastate to reconstruct an association to the object when it is recreated in memory
(reactivation). And the metastate can be used by a Persistence Service to restore the
persistent state of the object. See “Overview of the Object Life Cycle Model” on page 40 for
a more complete definition of object passivation and reactivation.

40 Programmer’s Guide for Object Services

Automatically Producing Persistent Object References
To help simplify the creation of persistent objects, a specialization of somOS::ServiceBase
is supplied. It automatically registers the object with the server-object and requests that a
persistent reference be created for it when the object is created. This specialization is
referred to as somOS::ServiceBasePRef. If you are a class programmer and want
persistent object references automatically created for instances of your class, you should
mix-in somOS::ServiceBasePRef.

This class also automatically destroys the persistent object reference for the object when
the object is destroyed. See “Overview of the Object Life Cycle Model” on page 40 for a
more complete definition of object destruction.

Maintaining Strict CORBA Compliance
CORBA states that an object is “an entity that has state.” This definition has interesting
implications for the case in which an object has a persistent object reference and transient
state. In the scenario described in Figure 12, if the object reference to M were persistent, in
scene 3 the server-object is able to reassociate the reference to object M in memory (even
if the memory address for M had changed).

However, if M’s state were transient, it would be lost as a result of process B exiting in
scene 2. The client in process A might not even know that process B had exited and
returned, except that the state contained in object M in scene 1 would be absent (or reset)
in scene 3. The absence of state could change the behavior of object M very dramatically.
In addition, it may appear that M is no longer the original object. It is a different object
because it has a different state and, therefore, has violated strict compliance with CORBA.

There are scenarios in which maintaining a persistent object reference to an object with
transient state is perfectly acceptable, even if the state is lost from time-to-time (as in the
case just described). For example, the state of a print-queue object is transient. Print jobs
are printed and discarded from the queue. The reference to the print-object is persistent
because it is recognized when the printer object reactivates after a shutdown phase.

However, if your class does not maintain the state for its instances persistently and it is
important for you to maintain strict compliance with CORBA, you can mix-in the
somOS::ServiceBaseCORBA class. If you mix-in this class, an INV_OBJREF standard
exception is raised if a method is invoked on an instance of your class that has been
passivated.

Overview of the Object Life Cycle Model
If you are a class programmer or a client programmer, you should understand the Object
Life Cycle Model supported by the Object Services Server.

We have discussed three distinct elements of an object:

• Its reference (and any metastate used to map the reference to the object)

• The in-memory object instance

• The object’s persistent state

On the one hand, these elements are highly related because they comprise the object in
the largest sense. On the other hand, they are distinct because each has independent life
cycles.

Object Services Server 41

An in-memory object can exist with or without a corresponding reference. A persistent
reference can be created or destroyed (perhaps multiple times) within the lifetime of an
object. The persistent state of an object can continue to exist, even if the in-memory object
instance is passivated.

There is a distinction between when an object is first created in its broadest sense and
when it is merely being recreated in-memory. The former case is object creation; the object
in its broadest sense is being created. The latter case is object reactivation.

Likewise, there is a distinction between when an object is finally being destroyed in its
broadest sense and when it is merely being removed from memory. The former case is
object destruction; the object in its broadest sense is being destroyed. The latter case is
object passivation.

An object without an object reference is an object without an exportable identity. The object
may exist but indirect clients cannot refer to it. Likewise, a reference to an object that does
not exist is an identity without an object. Therefore, in general, the object reference should
be created at object creation and destroyed at object destruction.

This reduces the Life Cycle Model down to two independent cycles:

• The life cycle of the object in its broadest sense — object creation and object
destruction

• The life cycle of the in-memory instance — object reactivation and object passivation

Managing the Object Life Cycle
Because an object, in the model supported by the Object Services Server, is subject to two
distinct life cycles, it must have a way to participate in the life cycles to ensure that the right
things happen at the right time. To assist in this, two distinct initializers and two distinct
uninitializers have been introduced:

• init_for_object_creation
• init_for_object_reactivation
• uninit_for_object_destruction
• uninit_for_object_passivation

These initializers and destructors provide you with the capability to perform the appropriate
kind of initialization and uninitialization, depending on whether the object is being created or
destroyed, or reactivated or passivated. The following are examples of tasks you can
perform with them:

• During init_for_object_creation, you can register the object in any frameworks or
containers to which the object should belong. Likewise, you can allocate any memory
the object needs from the heap or create and initialize persistent storage for your object.

• During uninit_for_object_passivation, you can store state of the object to persistent
storage or release any memory used in the heap.

• During init_for_object_reactivation, you can allocate any memory the object needs
from the heap or restore the object’s state from persistent storage.

• During uninit_for_object_destruction, you can de-register your object from any
frameworks or containers of which it has been a part. Likewise, you can destroy any
persistent storage your object uses or release any memory used in the heap.

All the preceding examples relating to persistence assume you are managing your own
persistence. The introduction of specialized initializers deprecated the use of
somDefaultInit. Likewise, the use of somDestruct is limited to removing the in-memory

42 Programmer’s Guide for Object Services

object (not uninitializing it). Consequently, if you are a client programmer, the following is
the prescribed model for creating a new object:

1. Either locate the class object of the object or create it. (You can also perform this step
by using the find_any method from the Naming Service.)

2. Invoke somNewNoInit on the class object to create a new instance. (You can also
perform this step by using the somdCreate(..., FALSE) convenience function.)

3. Invoke init_for_object_creation on the new instance to initialize it. (You can also
perform this step by using the somdCreate(..., FALSE) convenience function.)

To destroy an object:

1. Invoke uninit_for_object_destruction on the instance you want to destroy to
uninitialize it.

2. Invoke somDestruct on the instance to remove it from memory.

Initializing and uninitializing the object is a distinct step from creating it and destroying it in
memory. To simplify the procedure, you can write your own factory object to perform both
operations when creating an object.

CAUTION:! CAUTION:! CAUTION:!
Both somNewNoInit and init_for_object_creation return an object pointer to the
newly created object. Always discard the object pointer returned from
somNewNoInit or somCreate after it is used to invoke the
init_for_object_creation on the new object and a new pointer is returned. If the
object is given a persistent object reference, the persistent reference is relevant
only to the object pointer returned from init_for_object_creation. The pointer
returned from somNewNoInit is, at best, for a transient object reference.

If you are a client programmer and want to deliberately passivate an object, you can do so
by invoking passivate_object on the server-object (somOS::Server). This, among other
things, invokes uninit_for_object_passivation followed by somDestruct on the object
instance.

Objects are automatically reactivated on the first method request that occurs on a
passivated object. The server-object, among other things, invokes
init_for_object_reactivation on the object instance.

As stated in “Role of somOS::ServiceBase” on page 37, there are three initializers and
three destructors. Two of each have been discussed. The following are the remaining ones:

• init_for_object_copy
• uninit_for_object_move

This initializer and uninitializer can be used when an object is copied or moved to another
server process. For instance, with pass-by-value, when a replica of your object is created in
the target process, init_for_object_copy can be invoked to provide you the opportunity to
perform the proper initialization for your new copy. In the SOMObjects 3.0 product, these
methods are not used.

Service Initialization and Diamond Inheritance
Although they are not declared, as such, in IDL, the initializers and destructors introduced
by somOS::ServiceBase must be treated as true initializer methods. By convention, if you
override any of these initializers to perform your own initialization or uninitialization function,
it is important that you give your parent methods an opportunity to perform their own
initialization or uninitialization. Therefore, in the initializers, you should invoke each of your
parent implementations of the same initializer (if it exists) before you perform your own

Object Services Server 43

initialization. (If you multiply inherit and any of your parents is not derived from
somOS::ServiceBase, the initializer method does not exist in that parent for you to invoke.
However, you may need to call SomDefaultInit on such parents.)

Likewise, in the destructors, invoke each of your parent implementations after you perform
your own uninitialization.

With multiple inheritance comes the potential for diamonds in the class hierarchy, as
illustrated in Figure 13.

Figure 13. Multiple Inheritance and Diamonds

This inheritance diamond can occur above, if you are multiply inheriting, or below, if you are
being multiply inherited. If a class is at the top of an inheritance diamond (Class-A) and
parent method calls are being made, the method in that class probably is invoked twice —
once coming from Class-B and again coming from Class-C.

If this happens and you are performing initialization, do not perform certain kinds of
initialization twice. For instance, if you allocate the same variable twice, a memory leak can
occur. Because you cannot predict who might sub-class from you or how, protect against
the occurrence of multiple invocations. Do one of the following:

• Detect that you are getting called again and ignore the request. It is probably legitimate
to avoid calling your parents in this case.

• Detect whether memory has already been allocated for each variable, and avoid
allocating it again.

CAUTION:! CAUTION:! CAUTION:!
Ensure that everyone has the opportunity to perform initialization. If you multiply
inherit classes that are derived from somOS::ServiceBase, you must override all
initializers and uninitializers and invoke each of your parent implementations, even
if you do not have another reason to override them. This principle also applies to
the reinit and capture methods of somOS::ServiceBase, but never use them
directly. Because these methods are used by the object services, treat them like
initializers. Finally, this principle also applies to internalize_from_stream and
externalize_to_stream if you multiply inherit classes derived from CosStreamable.

44 Programmer’s Guide for Object Services

Configuration of Object Services Servers
Each server maintains two binary databases, one for metastate and one for persistent
attributes. The databases are located in the database directory specified by the SOMDDIR
variable in the configuration file under the somd stanza heading.

A master database contains the association of the implementation ID for a server and its
unique binary databases. This database is called SOMOSDB.DAT. This file is also located
in the directory specified by SOMDDIR. The master database is created by the first server
when it is initialized, which is probably at the time som_cfg is executed to configure the
runtime environment. (For more information, see “Initializing the Server Manually” on
page 45.) For each server, there are two entries in the master database, one for each of the
binary databases.

The adb file extension specifies an attribute persistence database, and the mdb file
extension specifies a metastate database.

Each of the binary databases has unique names. The databases cannot be shared
between servers. If a server does not find its own databases, it terminates with a log
message. In this case, you can restart the server in initialization mode by specifying a -i
parameter. When specified, the server re-initializes or creates the two required databases
and updates the master database. See “Initializing the Server from a Program” on page 45
and “Initializing the Server Manually” on page 45.

Parameters to Configure in the Server Configuration File
To maintain maximum flexibility, each Object Services Server can use a configuration file.
This file contains customizable parameters for the server, and you can modify these
parameters to improve the performance of the overall system. A sample server
configuration file named SOMOS.INI is located in the som\etc directory.

Depending on your system configuration, you can use either one or more configuration files
within a system. For most systems, one configuration file for all the servers is sufficient.

The following two parameters are currently available for configuration:

• CACHE_NUM_BUCKETS specifies the number of buckets in the cache. These
buckets are searched first before going to the file system. It has a default value of 50.

• CACHE_BUCKET_ELEMENT_MAX specifies the maximum number of elements each
bucket can contain within the cache. It has a default value of 0 (no limit).

Two stanzas are currently defined for the server within the configuration file:

• The [somos] stanza for metadata

• The [somap] stanza for attribute persistence

For a server to use the parameters specified in a configuration file, the regimpl database
for that server must specify the server configuration file. If the server configuration file is not
specified in the regimpl database, the server uses default values for each parameter.
Likewise, if a configuration file is specified, but does not contain values for all configurable
parameters, default values are used for any parameter not specified.

The following is a sample configuration file:

[somos]
CACHE_NUM_BUCKETS = 100
CACHE_BUCKET_ELEMENT_MAX = 0
[somap]

Object Services Server 45

CACHE_NUM_BUCKETS = 200
CACHE_BUCKET_ELEMENT_MAX = 0

To specify a configuration file, edit the regimpl database specification for the server, and
add the name of the configuration file for the server. The som_cfg program registers the
Naming Service and the Security Service to use the Object Services Server. For each of
these servers, no configuration file is specified, and the system uses default values.

Initializing the Server
You can initialize the server either manually or from a program.

Initializing the Server Manually
The -i command line parameter is provided for manual initialization of the Object Services
Server. When specified, this parameter initializes the server and sets up its persistent
databases for use. The server must be initialized once before use; otherwise, no database
exists, and the server terminates with an error log message.

To initialize the server, type the following:

somossvr -i -a myServer

where myServer is the implementation alias.

The server must have been registered with regimpl first before it can be initialized. If an
Object Services Server has already been initialized and is started again with the -i
parameter, the server re-initializes its databases. That means all persistence information is
lost, and the server starts up with no persistence information. This can be used if a server is
out of synch with the rest of the system. Because valuable data can be lost forever, use the
-i parameter with care once the system is configured and is operational.

Initializing the Server from a Program
To provide a programmatic way for customers to initialize or reinitialize the Object Services
Server, the following API is provided:

somos_init_pesist_dbs();

The following is an example of a C program that calls this API. The server must have been
configured in regimpl before this call, which can also be performed from within a C
program:

#include <somosutl.h>

 Environment *global_ev; /* Global ev */
 char *impl_alias = NULL; /* Implementation alias */
 int ret;

 /* ... */

 ret = somos_init_persist_dbs(impl_alias, global_ev);
 if (ret != 0) {
 ret = getExceptionValue(global_ev);
 }

The somos_init_persist_dbs() function initializes the databases that the Object Services
Server requires and prepares the server for use. The server program will fail with an error
log message if database initialization has not been performed.

46 Programmer’s Guide for Object Services

Creating Your Own Server Program
In order to provide customers the most flexibility in creating their own server programs and
customize the Object Services Server, the general flow of the server program is explained
in the following.

Only users who require further flexibility and require their own version of the server program
need to create their own version of the server program. For most users, the standard
supplied version of the somossvr.exe program is sufficient.

The main server program for the Object Services Server is fairly simple and consists of a
few SOM, DSOM, and some special functions required in order for it to be an Object
Services Server program. The following example shows the general flow of the Object
Services Server program:

/*
* somossvr.c
* This file provides the implementation of the SOMOS Server
* program. All operations except for those starting with
* "somos_" are required by all DSOM Server programs.
*/

/***/
/* Includes */
/***/
#include <stdio.h>
#include <somd.h>
#include <implrep.h>
#include <somosutl.h>

/***/
/* Macros */
/***/
#define CHECK_EV(ev) ((ev)->_major != NO_EXCEPTION)

/***/
/* External Variables */
/***/
extern char *optarg;
extern int optind;

/***/
/* Prototypes */
/***/
void usage(void);

/***/
/* Usage Function */
/***/
void
usage(void)
{
 fprintf(stderr,

 "somossvr [-i] [-d] -a [impl_alias | impl_uuid]\n");
 exit(SOMOS_USAGE_ERROR);
}

/***/
/* Main Program */
/***/
int

Object Services Server 47

main
(
 int argc,
 char **argv
)
{
 Environment *global_ev; /* Global ev */
 char *impl_alias = NULL; /* Implementation alias */
 char *impl_id = NULL; /* Implementation id */
 int c; /* Parameter */
 boolean debug_mode = FALSE; /* Debug */
 boolean initialize_mode = FALSE; /* Initialization mode */
 int rc; /* Return code */

somos_init_logging();

 /* Get options, See usage for valid options */
while ((c = somos_getopt(argc, argv, "a:id")) != -1)

 {
 switch (c)
 {
 case 'a':
 impl_alias = optarg;
 break;
 case 'd':
 debug_mode = TRUE;
 break;
 case 'i':
 initialize_mode = TRUE;
 break;
 default:
 usage ();
 break;
 }
 }
 if (optind != argc) {
 if (impl_alias != NULL) {

 /* Cannot pass both implementation alias and id */
 usage();
 }
 impl_id = argv[optind];
 }
 if (!impl_alias && !impl_id) {

 /* Cannot continue, must supply either the
 * implementation alias or id */
 usage();
 }

 /* Setup SOMOS internals */
somos_setup();

 /* Get the global environment */
 global_ev = somGetGlobalEnvironment();

 /* Initialize the DSOM run-time environment */
 SOMD_Init(global_ev);

 SOMD_NoORBfree();

 /* Create a SOMOA object and initialize the global
 * variable SOMD_SOMOAObject */
 SOMD_SOMOAObject = SOMOANew();

48 Programmer’s Guide for Object Services

 if (debug_mode) {

 /* Turn method tracing on */
 SOM_TraceLevel = 1;
 }

 /* Find implementation by alias or id */
 if (impl_alias) {
 SOMD_ImplDefObject = _find_impldef_by_alias(
 SOMD_ImplRepObject,
 global_ev, impl_alias);
 }
 else {
 SOMD_ImplDefObject = _find_impldef(SOMD_ImplRepObject,
 global_ev,
 impl_id);
 }
 if (CHECK_EV(global_ev)) {

 /* Could not find implementation definition.
 * Cannot continue! */

somos_exit(SOMOS_FIND_IMPLDEF_FAILED);
 }

 /* Initialize any required object services */
somos_init_services(initialize_mode);

 /* Register the implementation with the SOMOA */
 _impl_is_ready(SOMD_SOMOAObject,
 global_ev,
 SOMD_ImplDefObject);
 if (CHECK_EV(global_ev)) {

somos_exit(SOMOS_IMPL_IS_READY_FAILED);
 }

 /* Initialize any required object services -
 * after impl_is_ready */

somos_init_services_afterimpl(initialize_mode);
 printf("%s%s%s\n","somOS::Server (",
 __get_impl_alias(SOMD_ImplDefObject,global_ev),
 ") - Ready");

 /* Enter the somoa main loop - will not return */
 rc = _execute_request_loop(SOMD_SOMOAObject,
 global_ev,
 SOMD_WAIT);
 if(rc || CHECK_EV(global_ev))

somos_exit(SOMOS_REQUEST_LOOP_ERROR);
 else

somos_exit(0);
}

The first section in main has to do with error logging and parameter passing. The
somos_init_logging function initializes the error logging facility. The somos_getopt
function is provided to aid in the passing of parameters to the server program. In the
sample server program -a, -d, and -i are filtered out. These parameters have the following
functions within the server program:

-a - to pass the implementation alias
-i - to initialize the server databases the first time the server
 is started
-d - to run the server in debug mode

Object Services Server 49

After the parameter passing, the server program does error checking and initial setup. This
is done with the somos_setup call.

After this, the global environment is initialized and the DSOM run-time environment created
with the standard DSOM calls somGetGlobalEnvironment and SOMD_Init. Then the
SOMOA object is created, and the implementation is found either by an alias or an ID.

Internal services in the somOS::Server are initialized with the somos_init_services call,
which is followed by impl_is_ready. This, in turn, is followed by more initialization of
internal services in the server after impl_is_ready. If everything is successful, the server
enters into the request loop with the execute_request_loop call. The server does not
return from this call and remains within the request loop to process all incoming method
requests to the Object Services Server.

The somos_exit function is called if the server program fails, or if the server is terminated.
This function preforms special uninitializations on behalf of the Object Services Server and
various object services. The object services can perform special uninitializations by
registering their individual exit callback procedures using the
somos_register_exit_callback function defined in the somosutl.h file. Prior to calling any
exit callback procedure for an object service, the server passivates all objects.

The preceding program can be compiled with any C or C++ compiler that SOMobjects
supports. In order to resolve the somos_ API calls, the program must be linked with the
somtk library provided in the SOMobjects Developer Toolkit. Function prototypes and
return codes are specified in the somosutl.h file.

It is important that these API calls are performed in the order just given for your own version
of the Object Services Server to function properly.

Registering the Server with regimpl
In order to use the Object Services Server, you must configure an implementation with
regimpl. You must use the Object Services Server as your implementation server for any
of the Object Services. in your system. The som_cfg program automatically configures the
Naming Service and the Security Service to use the Object Services Server. When
configuring a new implementation that uses the Object Services Server, the server must be
initialized first before any method requests can be processed. For more information about
initialization, refer to “Initializing the Server” on page 45.

The following example shows the registration parameters required to register a new server
in the regimpl database:

Implementation alias: myServer
 ImplDef Class name: ImplementationDef
 Program name: somossvr.exe
 Multithreaded: Y

Server secure: N
 Server class: somOS::Server
 Configuration file:
 IPC protocol: Y

Depending on the system and the particular services for which the Object Services Server
is needed, you can specify it as either a single-threaded server or a multi-threaded server.
A configuration file is optional; specify it only when optimizing the environment. For most
systems, it is recommended that a configuration file not be specified. For the Object
Services Server to function properly, you must configure it with the somOS::Server class.

After the server implementation has been configured, the user can add classes to the
implementation in order to support their environment.

50 Programmer’s Guide for Object Services

Note: When a new implementation of the Object Services Server is specified in regimpl,
the specific server has not been initialized. The databases required by the server
for metadata and attribute persistent have not been initialized. To perform this
initialization, start the server with an -i parameter first, before it is available for any
method calls. An API call is also provided to perform this initialization, as explained
in the previous section.

Security Service 51

Chapter 6. Security Service
This chapter discusses the Security Service. The Security Service supports authentication
functionality only.

Included in this chapter is an introduction to the concepts of Security Service, principals,
and authentication. Also discussed are the security server, security perspectives of the end
user and administrator, and configuring a server as secure.

Concepts
Security Service ensures that only authenticated users can invoke privileged operations.
Implementing the service requires that all users be authenticated. Users must be known to
the system by a well-known name, such as a login name or user ID (UID), and must be
able to be validated by some means, such as passwords. Any DSOM server application
that exports objects to other applications and requires that object integrity not be
compromised must use the Security Service. Figure 14 shows how the Security Service fits
into the SOM⁄DSOM environment. This figure depicts the case that the security server is
configured on an OS/2 platform using the OS/2 LAN Server registry.

Figure 14. Security Service in a SOM/DSOM Environment

52 Programmer’s Guide for Object Services

Principal
A principal represents the identity of a user (or entity) executing the program. The entity
must be registered in a user registry and must be authenticated. For example, users
wanting to use a system must log in by identifying themselves with names and passwords.
Although there are many ways to authenticate principals, this Security Service
authenticates by password only.

Establishing an Authenticated Session
Authentication is the process of validating a user with a password. In this product, users are
authenticated with a platform-specific user registry. The platform on which the security
server is configured determines which user registry is used. In the case of OS/2, the LAN
Server 4.0 registry is used. In the case of AIX, the native AIX registry is used. In the case of
Windows/NT, the NT registry is used.

If users do not have an account in the user registry, they still can execute the DSOM
applications. In this case, the DSOM run time treats users as unauthenticated users. The
success of program execution depends upon whether the server is configured to run in
secure mode (see the section on Security Perspective: “Administrator” on page 55).

An authenticated session is established between a user and the application server, which is
configured to run in secure mode. The following steps, which correspond to the numbers in
Figure 14 on page 51, show how an authenticated session is established (this flow is
specific to the case where the security server is configured on an OS/2 platform, but the
flows are similar for other platforms):

1. Configure your server in secure mode. (Refer to “Configuring a Server as Secure” on
page 55.)

2. The security runtime obtains the login context from the environment or local UPM
registry. (UPM is the User Profile Manager that accompanies LAN Server 4.0 on OS/2
clients. The local UPM registry is a cache of the user’s credentials on the OS/2 client.)

3. When any method is invoked on a remote object (through its proxy), the client principal
is authenticated.

4. The client principal is authenticated with the security registry.

5. The credentials for the client principal are verified with the native verification service for
the operating system.

6. The security registry returns an indication of whether the principal is authenticated. A
security token is created and retrieved for authenticated principals.

7. The method request then is forwarded to your application server.

8. The security token is validated by the server to ensure that the request is authentic.

9. If the request is authentic, it is forwarded to the intended object.

All further messages from the client are tagged into a special token to indicate the
authenticity of the message.

Security Server and Security Domain
The security server is a DSOM server that supports the authentication functionality. The
actual authentication of users is based upon the user-registry mechanism specific to the
platform where the security server is configured. For instance, if the security server is

Security Service 53

configured on an OS/2 machine, then the LAN Server registry will be used. This implies that
all users executing DSOM applications and wanting to run authenticated must have an
account in the LAN Server registry.

The security server does not maintain any passwords or user account information. For any
account administration, the LAN Server (or other platform specific) tools must be used.

A security domain is one in which all DSOM applications communicate with only one
security server. The security server authenticates clients by verifying the login name and
password from the user registry. In the case of OS/2, the security server must run on the
same machine as that of the LAN Server or on a box on which the LAN Server registry is
replicated. In the latter case, it is essential that the machine also be physically secure. The
functionality required to facilitate interdomain authentication is not supported.

Security Perspective
This section explains security from the perspective of both the end user and the
administrator.

End User
The end user is usually a client program or a server that is behaving as a client to another
server. In order for any DSOM application to run authenticated, the user must log in
successfully. The user can log in using one of two different means, depending on the client
platform and the options specified in the client’s configuration file. The following attribute
can be set in the security stanza of the client’s configuration file:

LOGIN_INFO_SOURCE=<source-option>

where <source-option> is either:

DEFAULT

or, one or more of:

ENV

PROMPT

UPM

The source options, ENV, PROMPT and UPM can be specified in any order and any
combination. However, PROMPT is only valid when the client is on an AIX platform, and
UPM is only valid when the client is on an OS/2 platform. Where more than one source is
specified, the security service attempts to obtain the information from each source in turn
until a source yields all the required information (for example, login name and password), or
until all the sources are exhausted without success. Unrecognized sources are ignored and
if insufficient information is acquired then the user is not authenticated.

If DEFAULT is specified then the security service will default to using UPM on OS/2 and
ENV on NT and AIX. In the configuration file, somenv.ini, that accompanies SOMobjects
3.0, this is the default.

If ENV is specified then the security service will acquire the user name and password from
environment variables. The user name is obtained from USER on OS/2 and AIX, and from
USERNAME on NT. USER and USERNAME are normally set up by the respective
operating systems. The password is obtained from PASSWD. It is up to the client
application to set up the PASSWD environment.

The environment variables may be set programmatically in the client program (before the
program initializes the DSOM runtime). Here is a “C” example:

54 Programmer’s Guide for Object Services

int main()
{

/* Variable declarations, etc */
/* ... */

putenv(“PASSWD=mypasswd”);

/* ... */

SOMD_Init();

/* Use DSOM */
/* ... */

}

This approach requires the client program source to be edited and recompiled if the
program is to run with different login information.

A more flexible alternative is to set up the variables outside the client program.

On AIX:

export PASSWD=mypasswd

On OS/2:

set PASSWD=mypasswd

On NT:

set PASSWD=mypasswd

or use the NT registry.

If PROMPT is specified, the security service prompts the client for the login information.
This interactive source option is available on AIX only. See “Authentication on AIX” on
page 55 for further details.

If UPM is specified, the security service obtains the login information from UPM. This
source option is available on OS/2 only.

If you do not specify this attribute in the client’s configuration file, that is equivalent to:

LOGIN_INFO_SOURCE=DEFAULT

Authentication on OS/2: When the security server is configured on an OS/2 platform, it
uses the LAN Server 4.0 user registry for authenticating users. Users must be registered
with the LAN Server user registry to access a secure server with DSOM.

If the client is using OS/2, users can log in using UPM. If the LOGIN_INFO_SOURCE
attribute in the configuration file is set to use UPM as a source, the security service obtains
login information from the UPM local registry.

If the user logs in to multiple LAN server domains, only the first entry in the UPM local
registry is picked up. The end user also must ensure that the same login name and
password are valid on the machine or node on which the security server is running. The
application the user is invoking runs only under one identity, and the application cannot
make authenticated associations with applications executing in a different domain.

Users who are logged on to the LAN server, but do not want to run authenticated, can do
so by setting the following attribute in the security stanza of the configuration file:

LOGIN_INFO_SOURCE=

Security Service 55

If the attribute is set to nothing (as shown), the security runtime ignores the user’s log in
into the LAN server.

Authentication on AIX: When the security server is configured on an AIX platform, the
security service validates security information against the native AIX user registry. Users
must be registered with the user registry on that AIX host to access a secure server with
DSOM. Also, the security server must be run with superuser (that is, “root”) privilege so that
it can access the user registry. One way to achieve this is to have the security server
started by an administrator logged-in to AIX as root or with su.

If LOGIN_INFO_SOURCE is set to PROMPT at the client on an AIX platform, the security
service prompts the client to run the somlog program. The somlog program will in turn
prompt for the client’s login name followed by the password. somlog does not display the
password.

Authentication on NT: When the security server is configured on an NT platform, the
security service validates security information against the NT user registry. Users must be
registered with the user registry on that NT host to access a secure server with DSOM.
Also, the security server requires NT SecTcbPrivilege in order to access the user registry.
One way to achieve this is to have the security server started by an administrator with “Act
as part of the operating system” User Rights Policy. This can be conferred using the
Policies pull-down menu of the User Manager (administration tool) for the administrator.

Administrator
The administrator has two responsibilities:

• Security server

• Security mode of a server application

Security Server: The administrator must ensure that the security server always is running.
This is crucial because the clients get authenticated by the security server.

The security server is a DSOM server and is started automatically by DSOM if it isn’t
already up; for example, during SOMobjects 3.0 configuration. However, the security server
requires superuser or SecTcbPrivilege to perform login validation on AIX and NT,
respectively, and might have to be started manually by an administrator with the required
privilege. The command to start the server is:

somossvr -a securityServer

The securityServer is the DSOM alias assigned to the security server during the
configuration of SOMobjects 3.0. If you change the alias to something else, you need to
modify the previous statement accordingly.

Secure Mode of a Server Application: A server running in secure mode implies that it
accepts method requests from authenticated clients only. An administrator can configure a
server to run in secure mode using the regimpl command (refer to the registration steps
using regimpl in “Configuring a Server as Secure” on page 55). If the secure mode flag is
set to YES, then only authenticated clients can invoke methods. If, for any reason, the flag
is changed, the application server must be restarted for the flag to take effect.

Configuring a Server as Secure
For a server process to be run securely, it must be registered as a secure server in the
SOM implementation repository. Do this by invoking the regimpl command:

regimpl -u -i <...> -s [on | off]

56 Programmer’s Guide for Object Services

-s
Set to on to make the server secure. This ensures that only authenticated clients can
invoke calls on the objects the server supports.

See “The regimpl Registration Utility” on page 32 of Programmer’s Guide for SOM and
DSOM for additional information on regimpl.

Note: Ensure that the global naming server is secure.

 Glossary 57

Glossary

A
abstract class. A class that serves as a base class

for the definition of subclasses. Regardless
of whether an abstract class inherits
instance data and methods from parent
classes, it always introduces methods that
must be overridden in a subclass.

affinity group. An array of class objects that were
all registered with the SOMClassMgr object
during the dynamic loading of a class. Any
class is a member of at most one affinity
group.

aggregate type. A user-defined data type that
combines basic types (such as, char, short,
float, and so on) into a more complex type
(such as structs, arrays, strings, sequences,
unions, or enums).

apply stub. A procedure corresponding to a
method that extracts the arguments from
the va_list, invokes the method, and stores
its result. Also are registered with class
objects when instance methods are defined.
Invoked using the somApply function.

B
base class. See parent class.
Basic Object Adapter (BOA). A type of object

adapter defined by CORBA to support a
wide variety of common object
implementations.

behavior (of an object). The methods that an
object responds to. These methods are
those either introduced or inherited by the
class of the object. See also state.

BOA (basic object adapter) class. A CORBA
interface, which defines generic object-
adapter (OA) methods that a server can use
to register itself and its objects with an ORB
(object request broker).

BOA. See Basic Object Adapter.

C
casted dispatching. A form of method dispatching

that uses casted method resolution.
class object. The run-time object representing a

SOM class. In SOM, a class object can
perform the same behavior common to all
objects, inherited from SOMObject.

class variable. Instance data found within an
object that is a class.

client code. An application program, written in the
programmer’s preferred language, which
invokes methods on objects that are
instances of SOM classes. In DSOM, this
could be a program that invokes a method
on a remote object.

compound name. In the Naming Service, a name
that has multiple components. Name
components are IDL structures.

constraint. In the Naming Service, an expression
used to describe the characteristics of a
bound object being searched for.
Constraints are expressed in Constraint
Language.

CORBA. The Common Object Request Broker
Architecture established by the Object
Management Group. The SOM Interface
Definition Language used to describe the
interface for SOM classes is fully compliant
with CORBA standards.

D
data token. A value that identifies a specific

instance variable within an object whose
class inherits the instance variable derived
class See subclass and subclassing.

descriptor. An ID representing the identifier of a
method definition or an attribute definition
in the Interface Repository. The IR
definition contains information about the
method’s return type and the type of its
arguments.

58 Programmer’s Guide for Object Services

dispatch method. A method invoked in order to
determine the appropriate method
procedure to execute.Using dispatch
methods facilitates dispatch-function
resolution in SOM applications and enables
method invocation on remote objects in
DSOM applications.

DLL. dynamic link library.
dynamic dispatching. Method dispatching using

dispatch-function resolution
Dynamic Invocation Interface (DII). The CORBA-

specified interface, that is used to
dynamically build requests on remote
objects. DSOM applications can also use
the somDispatch method for dynamic
method calls when the object is remote.

dynamic link library. A piece of code that can be
loaded (activated) dynamically. This code is
physically separate from its callers. DLLs
can be loaded at load time or at run time.
Widely used term on OS/2 and other
operating systems.

E
emitter. Generically, a program that takes the

output from one system and converts the
information into a different form. Using the
Emitter Framework, selected output from
the SOM Compiler is transformed and
formatted according to a user-defined
template.

encapsulation. An object-oriented programming
feature whereby the implementation details
of a class are hidden from client programs,
which are required to know the only
interface of a class in order to use the
class’s methods and attributes.

entry class. In the Emitter Framework, a class that
represents some syntactic unit of an
interface definition in the IDL source file.

Environment parameter. A CORBA-required
parameter in all method procedures, it
represents a memory location where
exception information can be returned by
the object of a method invocation.

F
factory. An object that is capable of creating

another object.

I
ID. See somId.
Implementation Repository. A database used by

DSOM to store the implementation
definitions of DSOM servers.

implementation. The specification of what
instance variables implement an object’s
state and what procedures implement its
methods (or behaviors). In DSOM, a
remote object’s implementation is also
characterized by its server implementation
(a program).

index. In the Naming Service, an index that the
user can create on specific properties in a
naming context. It improves the
performance of searches that involve a
property.

inheritance hierarchy. The sequential relationship
from a root class to a subclass, through
which the subclass inherits instance
methods, attributes, and instance variables
from all of its ancestors, either directly or
indirectly.

in-memory object. An object instantiated in
memory. Differs from an object whose
state can be stored in a persistent
database for which no in-memory object
has been instantiated.

instance method. A method valid for an object
instance (versus a class method, which is
valid for a class object). An instance
method that an object responds to is
defined by its class or inherited from an
ancestor class.

instance token. A data token that identifies the
first instance variable among those
introduced by a given class. The
somGetInstanceToken method invoked on
a class object returns that class’s instance
token.

instance. (Or object instance or just object.) A
specific object, as distinguished from a
class of objects. See also object.

Interface Repository (IR). The database that SOM
optionally creates, providing persistent
storage of objects representing the major
elements of interface definitions.Creation
and maintenance of the IR is based on
information supplied in the IDL source file.

 Glossary 59

Interface Repository Framework. A set of classes
that provide methods whereby executing
programs can access the persistent objects
of the Interface Repository to discover
everything known about the programming
interfaces of SOM classes.

IR. Interface Repository.

L
location services daemon. A process whose

primary purpose is to give DSOM clients the
communications information they need to
connect with an implementation server.

M
macro. An alias for executing a sequence of hidden

instructions. In SOM, typically the means of
executing a command known within a
binding file created by the SOM Compiler.

managed object. An object subject to any of the
SOMobjects object services.

metaclass. A class whose instances are classes. In
SOM, any class descended from SOMClass
is a metaclass. The methods a class
inherits from its metaclass are sometimes
called class methods (in Smalltalk) or
factory methods (in Objective-C) or
constructors.

metastate. The state introduced to an object and
used by an object service framework.

method descriptor. See descriptor.
method ID. A number representing a zero-

terminated string by which SOM uniquely
represents a method name. See also somId.

method pointer. A pointer type that identifies one
method on a single class. Method pointers
are not ensured to be persistent among
multiple processes.

method procedure. A function or procedure,
written in an arbitrary programming
language, that implements a method of a
class. A method procedure is defined by the
class implementor within the
implementation template file generated by
the SOM Compiler.

method table. A table of pointers to the method
procedures that implement the methods
that an object supports. See also method
token.

method token. A value that identifies a specific
method introduced by a class. A method
token is used during method resolution to
locate the method procedure that
implements the identified method.

module. The organizational structure required
within an IDL source file that contains
interface declarations for two (or more)
classes that are not a class-metaclass pair.
Such interfaces must be grouped within a
module declaration.

multiple inheritance. The situation in which a
class is derived from (and inherits interface
and implementation from) multiple parent
classes.

N
name binding. In the Naming Service, a name-to-

object association. Different names can be
bound to an object in the same or different
naming contexts at the same time.

name. In the Naming Service, an ordered
sequence of name components, which are
IDL structures composed of id and kind
strings. A simple name has a single
component.

names library. In the Naming Service, a library of
names from that and other services. It
allows names to evolve without affecting
existing clients. Names are implemented
as pseudo-objects, which are converted to
and from structures.

naming context. In the Naming Service, an object
that contains name-object associations
(bindings).

naming scope. See scope.
Naming Service. A service that provides the ability

to refer to objects by name. It organizes
computing resources so that they easily
can be located, identified, and categorized
either in context or by explicit
characterization.

nonstatic method. A special kind of SOM method.

O
object adapter. Defined by CORBA as being

responsible for object reference, activation,
and state-related services to an object
implementation.

object definition. See class.

60 Programmer’s Guide for Object Services

object implementation. See implementation.
object instance. See instance and object.
object passivation. The process of deleting the in-

memory instantiation of an object,
especially an object with persistent state
even after being passivated.

object reactivation. The process of re-instantiating
an object in-memory, especially when the
object exists in persistent form even before
being reactivated.

object reference. A CORBA term denoting the
information needed to reliably identify a
particular object. This concept is
implemented in DSOM with a proxy object
in a client process, or a SOMDObject in a
server process. See also proxy object and
SOMDObject.

object request broker (ORB). See ORB.
object services base class. The base class for

object services mix-in classes.
object services mix-in class. Any mix-in class

introduced by an object service that is
intended to be mixed-in to a managed
object.

Object Services Server. A server that, with the
DSOM object adapter, exports and imports
object references. Aa a specialization of the
DSOM framework, supports SOMobjects
Object Services, handling such tasks as
metastate and persistent object references.

object services server-object. The Object
Services Server specialization (somOS
Server) of the default DSOM framework
server-object (SOMDServer).

objref. An abbreviation for object reference,
specified by CORBA to be a value that
unambiguously references an object.

OIDL. The original language used for declaring
SOM classes. The acronym stands for
Object Interface Definition Language. OIDL
is still supported by SOM, but it does not
include the ability to specify multiple
inheritance classes.

OOP. object-oriented programming.
operation. See method.
ORB. (object request broker). A CORBA term

designating the means by which objects
tranparently make requests (that is, invoke
methods) and receive responses from
objects, whether they are local or remote.

overridden method. A method defined by a parent
class and reimplemented (redefined or
overridden) in the current class.

override. The technique by which a class replaces
(redefines) the implementation of a method
that it inherits from one of its parent
classes. An overriding method can elect to
call the parent class’s method procedure
as part of its own implementation.

P
parent class. A class from which another class

inherits instance methods, attributes, and
instance variables. A parent class is
sometimes called a base class or
superclass.

parent method call. A technique where an
overriding method calls the method
procedure of its parent class as part of its
own implementation.

persistent object. An object whose state can be
preserved beyond the termination of the
process that created it. Typically, such
objects are stored in files.

persistent reference. An object reference that can
survive the process or thread that created it.

principal. The user on whose behalf a particular
(remote) method call is being performed.

procedure. A small section of code that executes a
limited, well-understood task when called
from another program. In SOM, a method
procedure is often referred to as a
procedure. See method procedure.

process. A series of instructions (a program or part
of a program) that a computer executes in
a multitasking environment.

pragma. A compiler directive, usually specified in
code by #pragma.

property. A name-value pair associated with a
name binding. The name can be any
CORBA String and the value is a CORBA
any.

R
readers and writers. A reader is a process that

does not intend to update the object, but
wants to watch as other processes update
it. A writer is a process that wants to
update the object as well as continually
watch the updates performed by others.

 Glossary 61

receiver. See target object.
run-time environment. The data structures,

objects, and global variables that are
created, maintained, and used by the
functions, procedures, and methods in the
SOM run-time library.

S
scope. That portion of a program within which an

identifier name has visibility and denotes a
unique variable. An IDL source file forms a
scope. An identifier can only be defined
once within a scope.

server object. An artifact in the DSOM framework
to assist in the mapping of object
references to in-memory objects, and in-
memory objects to object references. The
mapping is used in the exportation and
importation of object references.

shadowing. A technique that is required when any
of the entry classes are subclassed.
Shadowing causes instances of the new
subclasses to be used as input for building
the object graph, without requiring a
recompile of emitter framework code.

signature. The collection of types associated with a
method (the type of its return value, if any,
as well as the number, order, and type of
each of its arguments).

simple name. In the Naming Service, a name that
has a single component. Name components
are IDL structures.

SOM Compiler. A tool provided by the SOM Toolkit
that takes as input the interface definition
file for a class (the .idl file) and produces a
set of binding files that make it more
convenient to implement and use SOM
classes.

SOMClass. One of the three primitive class objects
of the SOM run-time environment.
SOMClass is the root (meta)class from
which all subsequent metaclasses are
derived. SOMClass defines the essential
behavior common to all SOM class objects.

SOM-derived metaclass. See derived metaclass.

SOMDObject. The class that implements the
notion of a CORBA object reference in
DSOM. An instance of SOMDObject
contains information about an object’s
server implementation and interface, as
well as a user-supplied identifier.

SOMDServer. The default implementation of a
server-object provided by the DSOM
framework.

somId. A pointer to a number that uniquely
represents a zero-terminated string. Such
pointers are declared as type somId. In
SOM, somIds are used to represent
method names, class names, and so forth.

SOMOA. The DSOM implementation of a CORBA
object adapter.

SOMObject. One of the three primitive class
objects of the SOM run-time environment.
SOMObject is the root class for all SOM
(sub)classes. SOMObject defines the
essential behavior common to all SOM
objects.

somOSServiceBase. The module and interface
name for the managed object base class.

somSelf. Within method procedures in the
implementation file for a class, a parameter
pointing to the target object that is an
instance of the class being implemented. It
is local to the method procedure.

state (of an object). The data (attributes, instance
variables and their values) associated with
an object. See also behavior.

static linkage. Occurs when a program uses data
or functions that are defined elsewhere.
Simply declaring the existence of external
data or functions does not create this
linkage, actual usage of external data or
functions is required.

static method. Any method you can access
through offset method resolution. Any
method declared in the IDL specification of
a class is a static method. See also method
and dynamic method.

stub procedures. Method procedures in the
implementation template generated by the
SOM Compiler. They are procedures
whose bodies are largely vacuous, to be
filled in by the implementor.

superclass. See parent class.

62 Programmer’s Guide for Object Services

symbol. Any of a set of names that are used as
placeholders when building a text template
to pattern the desired emitter output. When
a template is emitted, the symbols are
replaced with their corresponding values
from the emitter’s symbol table.

T
target object. The object responding to a method

call.The target object is always the first
formal parameter of a method procedure.
For SOM’s C-language bindings, the target
object is the first argument provided to the
method invocation macro, _methodName.

transient object. In CORBA, an object whose
existence is limited by the lifetime of the
process or thread that created it. In
SOMobjects, more accurately an object with
a transient state.

transient reference. An object reference whose
existence is limited by the lifetime of the
process or thread that created it.

U
usage bindings. The language-specific binding

files for a class that are generated by the
SOM Compiler for inclusion in client
programs using the class.

W
writers. See readers and writers.

 Index 63

Index

A
add_index method 30
add_properties method 27
add_property method 27
AIX authentication 55
AIX user registry 55
authentication 52

AIX 55
NT 55
OS/2 54
user registry 52

B
bind method 24– 25
bind_context method 24– 26
bind_context_with_properties method 24– 25
bind_new_context method 27
bind_with_properties method 24– 25
BNF

for Naming Constraint Language 31
precedence relations 33
search constraint 31

C
compound name 21
configuring a security server 55
Constraint Language 29
create_lname function 31
create_lname_component function 31

D
domain 53

E
environment variable 53

PASSWD 53
USER 53
USERNAME 53

establishing an authenticated session 52
ExtendedNamingContext interface 19
Externalization Service

definition 7

externalization service 7
and DSOM 9
classes 7
externalizing objects 11
managing references

with Instance Manager 11
with object 11

streamable object 7
initialization 9

F
FileXNaming::FileENC class 19
find_all method 29
find_any method 29
find_any_namebinding method 29

G
get_all_properties method 29
get_properties method 29
get_property method 29

I
Identity Service

efficiency 13
objects as metaphors 13
performance 13
purpose 13
somOS::ServiceBase class

applicability 15
class diagram 15
overview of 13

Implementation Repository 35
init_for_object_creation method 41
init_for_object_reactivation method 41
interdomain 53
invoking passivate_object 35

L
Life Cycle Model 40
list_indexes method 30
list_properties method 28
LName interface 30

64 Programmer’s Guide for Object Services

LName object 31
LNameComponent interface 30
LNameComponent object 31
local root naming context 24

M
managed object 52
metastate 39

database 39
managed by Object Services Server 35
restores persistent state 39

method
init_for_object_creation 41
init_for_object_reactivation 41
uninit_for_object_destruction 41
uninit_for_object_passivation 41

N
name

building and manipulating 30
component 22
definition 21

name component 22
name graph 20
names library 30
Naming Service

abstract class 19
BNF

for Naming Constraint Language 31
precedence relations 33
search constraint 31

building names 30
class

FileXNaming::FileENC 19
compound name 21
Constraint Language 29
description 17
enhancements 19
external attributes of object 27
how to begin using 24
interface

ExtendedNamingContext 19
LName 30
LNameComponent 30

local root naming context 24
method 25

add_index 30

add_properties 27
add_property 27
bind 24– 25
bind_context 24– 26
bind_context_with_properties 24– 25
bind_new_context 27
bind_with_properties 24– 25
binding 24
find_all 29
find_any 29
find_any_namebinding 29
get_all_properties 29
get_properties 29
get_property 29
list_indexes 30
list_properties 28
new_context 26
next_n method 29
next_one 29
rebind 24– 25
rebind_context 24
rebind_context_with_properties 24
remove_index 30
resolve 25
resolve_with_all_properties 25
resolve_with_properties 25
resolve_with_property 25
retrieving property values 28

name 21
name component 22
name graph 20
names library 30
naming context

creation 26
definition 17
operations 20

naming contexts
details about 20

object
LName 31
LNameComponent 31

operation
listing property values 28
retrieving object bound to name 25

overview 17
property 22

 Index 65

adding after creation of binding 27
definition 19

PropertyBindingIterator 28
registeration 24
searching the name space 29
sharing 19
simple name 21
what is provided 17

new_context method 26
next_n method 29
next_one method 29
NT authentication 55
NT user registry 55

O
object

and Identity Service 13
creation 41

description 41
procedure 42

destruction 41
description 41
procedure 42

initializing 42
managed 37, 52
passivation 41
reactivation 41
streamable 7

initialize 9
uninitialization 41

Object Life Cycle Model 40
object reference

definition 38
exportation 36
importation 36
mapping 38
persistent 39
persistent versus transient 38

object service
security 51

Object Services Server
components 35
configuration

description 44
parameters used for 44

CORBA compliance 40

destructor
lifecycle considerations 41
overriding those supplied 42
using your own 42

diamond in class hiearchy 43
DSOM framework 35
Implementation Repository 35
inheritance relationships 35
initialization

multiple (avoiding) 43
initializer

init_for_object_creation method 41
init_for_object_reactivation method 41
lifecycle considerations 41
overriding those supplied 42– 43
using your own 42

initializing an object 42
managed object 37
metastate

database 39
managed by Object Services Server 35
reconstruct reassociation 39
restores persistent state 39

object creation 41
description 41
procedure 42

object destruction
description 41
procedure 42

Object Life Cycle Model 40
object passivation 35, 41
object reactivation 41
object reference

definition 38
exportation 36
importation 36
persistent versus transient 38

overview 35
passivate_object 35
persistent object reference

automatic creation 35, 40
definition 39
instituted by Object Services Server 35
make_persistent_ref method 39
mapping 38
registration 40

66 Programmer’s Guide for Object Services

with transient state 40
purpose 35
server program

creating 46
details about 48
example 46

somOS::ServiceBase class
destructors 37
initializers 37
lifecycle 37
role 37

somOS::ServiceBasePRef class 40
transient state 40
uninitializer

differs from destructor 42
life cycle considerations 41
uninit_for_object_destruction method 41
uninit_for_object_passivation method 41

OS/2 authentication 54

P
password 53
persistent object reference

automatic creation 40
definition 39
instituted by Object Services Server 35
make_persistent_ref method 39
registration 40
versus transient 38
with transient state 40

principal 52
principal (identity of user or entity) 52
property

add external attributes 27
Constraint Language 29
definition 19
in ExtendedNaming module 22
PropertyBindingIterator 28
retrieving values 28

PropertyBindingIterator interface 28

R
rebind method 24– 25
rebind_context method 24
rebind_context_with_properties method 24
rebind_with_properties 25
rebind_with_properties method 25

refind_context_with_properties method 24
regimpl 55
registration with Naming Service 24
registry

UPM 54
remove_index method 30
resolve method 25
resolve_all_properties method 25
resolve_with_properties method 25
resolve_with_property method 25

S
searching the name space 29
SecTcbPrivilege 55
security

authentication
AIX 55
NT 55
OS/2 54

security domain 53
security server 52, 55

account administration 53
administrator role 55
security domain 53

Security Service
concepts about 51
configuring server as secure 55
perspective

administrator 55
end user 53

principal (identity of user or entity) 52
security domain 53
security server 52
SOM/DSOM environment 51

security service 51
server

security 52, 55
domain 53
interdomain 53

security administrator 55
service

externalization 7
security 51

simple name 21
somenv.ini 53
somOS::ServiceBase class

 Index 67

and Identity Service 13
applicability 15
class diagram 15
overview 13

steamable object
initialize 9

stream 9
streamable object 7
superuser privilege 55

U
uninit_for_object_destruction method 41
uninit_for_object_passivation method 41
uninitializer

differs from destructor 42
life cycle considerations 41
uninit_for_object_destruction method 41
uninit_for_object_passivation method 41

UPM registry 54
user name 53
user registry 52

AIX 55
AIX registry 52
LAN Server registry 52
NT 55
NT registry 52

Printed in U.S.A.

.

