
SOMobjects Developer’s Toolkit
Programmer’s Reference Volume III: Abstract Interface Definitions
SOMobjects Version 3.0

Note: Before using this information and the product it supports, be sure to read the
general information under Notices on page iii.

Second Edition (December 1996)

This edition of Programmer’s Reference Volume III: Abstract Interface Definitions applies to SOMobjects
Developer’s Toolkit for SOM Version 3.0 and to all subsequent releases of the product until otherwise
indicated in new releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this
statement may not apply to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements nor that the
publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes are incorporated in new editions of the publication. IBM
Corporation might make improvements and/or changes in the product(s) and/or the program(s) described in
this publication at any time.

This publication might contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM Corporation intends to announce such IBM products, programming, or
services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only the IBM licensed program. You can use any functionally equivalent
program instead.

To initiate changes to this publication, submit a problem report via the technical support web page at: http://
www.austin.ibm.com/somservice/supform.html. Otherwise, address comments to IBM Corporation, Internal
Zip 1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM Corporation may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1996. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

 Notices iii

Notices

IBM Corporation may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language,
which illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these
sample programs in any form without payment to IBM Corporation, for the purposes of developing, using,
marketing, or distributing application programs conforming to the AIX, OS/2, or Windows application
programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: “© (your company name) (current year), All Rights Reserved.”
However, the following copyright notice protects this documentation under the Copyright Laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation
intends to make these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only
IBM licensed programs, products, or services can be used. Any functionally-equivalent product, program or
service that does not infringe upon any of the IBM Corporation intellectual property rights may be used
instead of the IBM Corporation product, program, or service. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM Corporation, are the user’s
responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries in writing to the:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department 931S
11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing
IBM World Trade Asia Corporation,
2-31 Roppongi 3-chome,
Minato-ku, Tokyo 106, Japan

This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

iv Programmer’s Reference for Abstract Interface Definitions

Trademarks and Acknowledgements

AIX is a trademark of International Business Machines Corporation.
BookManager is a trademark of International Business Machines Corporation.
FrameViewer is a trademark of Frame Technology.
IBM is a registered trademark of International Business Machines Corporation.
OS/2 is a trademark of International Business Machines Corporation.
SOM is a trademark of International Business Machines Corporation.
SOMobjects is a trademark of International Business Machines Corporation.
Windows and Windows NT are trademarks of Microsoft Corporation.

 Contents v

Contents

About This Book . vii
Who Should Use This Book . vii
How This Book Is Organized . vii

Highlighting . vii
Related Publications . vii

Explanation of What This Book Describes . viii

Chapter 1. Extended Naming Interface Definitions . 1
The ExtendedNaming Module . 2
ExtendedNaming::PropertyBindingIterator Interface . 3

destroy Operation . 4
next_n Operation. 5
next_one Operation. 6

ExtendedNaming::PropertyIterator Interface . 7
destroy Operation . 8
next_n Operation. 9
next_one Operation. 10

ExtendedNaming::IndexIterator Interface . 11
destroy Operation . 12
next_n Operation. 13
next_one Operation. 14

ExtendedNaming::ExtendedNamingContext Interface . 15
add_index Operation. 17
add_properties Operation . 18
add_property Operation . 20
bind_context_with_properties Operation. 22
bind_with_properties Operation . 24
find_all Operation . 26
find_any Operation . 27
find_any_name_binding Operation . 28
get_all_properties Operation. 29
get_features_supported Operation . 31
get_properties Operation . 32
get_property Operation . 34
list_indexes Operation. 35
list_properties Operation . 36
rebind_context_with_properties Operation . 37
rebind_with_properties Operation . 39
remove_all_properties Operation . 40
remove_index Operation. 41
remove_properties Operation . 42
remove_property Operation . 43
resolve_with_all_properties Operation . 44
resolve_with_properties Operation . 46
resolve_with_property Operation . 48
_get_allowed_object_types Operation . 50
_get_allowed_property_names Operation . 51
_get_allowed_property_types Operation. 52

Appendix A. BNF for Naming Constraint Language . 53

vi Programmer’s Reference for Abstract Interface Definitions

Index . 55

 About This Book vii

About This Book
This book explains the abstract interface definitions introduced by the SOMobjects Object
Services. The SOMobjects Object Services provide an implementation of standard
interfaces defined by the Object Management Group (OMG) and implementations of the
interfaces introduced in this book. The SOMobjects Object Services are object-oriented
class libraries for managing objects in distributed applications.

Who Should Use This Book
This book is intended for software developers who need to understand the Abstract
interfaces introduced by SOMobjects Object Services. Typically this would be someone
who intends to provide an implementation of one of the Abstract interfaces.

You will find having the following background helpful:

• Familiarity with the OMG CORBA 1.1 and CORBA IDL specifications

• Familiarity with the OMG Common Object Services, in particular the Naming Service.

• Knowledge of object-oriented principles

• Familiarity with distributed systems management and object management concepts

How This Book Is Organized
This book provides abstract class information on SOMobjects Developer’s Toolkit for SOM
Version 3.0.

Highlighting
This book uses the following highlighting conventions:

Bold
Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that you select.

Italics
Identifies parameters whose actual names or values you supply. Also identifies new
terminology.

Monospace
Identifies examples of specific data values, examples of text similar to what you might
see displayed, examples of portions of program code similar to what you might write as
a programmer, messages from the system, or information you should actually type.

Related Publications
The following books contain information about, or related to, SOMobjects Object Services:

• Common Object Services Specification Volume 1 (OMG Document Number 94-1-1)

• CORBAservices: Common Object Services Specification (OMG Document Number 95-
3-31)

• Programmer’s Guide for SOM and DSOM

• Programmer’s Reference for SOM and DSOM

viii Programmer’s Reference for Abstract Interface Definitions

Explanation of What This Book Describes
The SOMobjects Object Services provide an implementation of standard interfaces defined
by the OMG. The “About Programmer’s Reference for Object Services” in Programmer’s
Reference for Object Services provides a detailed explanation of the relationship between
standard interface definitions and SOMobjects Object Services. This includes:

• A description of various approaches to implementing standards

• An explanation of the approach used by the SOMobjects Object Services in providing
implementations of the standards.

• An explanation of how the SOMobjects Object Services implementations are
documented.

It is highly recommended that you are familiar with the material in that chapter prior to
reading this section.

The interfaces introduced in the OMG standards are treated as abstract interface definitions
by SOMobjects Object Services. In addition, SOMobjects Object Services introduces some
additional abstract interfaces that are extensions and additions to the OMG standard
interfaces. These abstract interfaces then have one or more implementations described in
the SOMobjects Developer’s Toolkit:

• Programmer’s Guide for Object Services

• Programmer’s Reference for Object Services

For most users of the SOMobjects Object Services, the description of the implementations
provided in the Programmer’s Guide for Object Services and Programmer’s Reference for
Object Services is sufficient to provide the needed information. However, when there is a
need to understand the abstract interface definitions associated with the implementations,
the documentation of the standards themselves must be referenced. This book covers the
documentation for those abstract interface definitions that are not defined by standards, but
are introduced by SOMobjects Object Services. More specifically, the following list identifies
the documentation that applies for particular circumstances:

• Using or specializing implementations provided by SOMobjects Object Services.

- Programmer’s Guide for Object Services

- Programmer’s Reference for Object Services

• Understanding or providing implementations of abstract interface definitions introduced
by the OMG.

- Common Object Services Specification Volume 1 (OMG Document Number 94-1-1)

- CORBAservices: Common Object Services Specification (OMG Document Number
95-3-31)

• Understanding or providing implementations of abstract interface definitions introduced
by SOMobjects Object Services

- Programmer’s Reference for Abstract Interface Definitions

Chapter 1. Extended Naming Interface Definitions 1

Extended Naming Interface Definitions

Chapter 1. Extended Naming Interface Definitions
The ExtendedNaming module introduced by SOMobjects Object Services is an extension
of the OMG defined CosNaming module. Refer to the Common Object Services
Specification Volume 1 (OMG Document Number 94-1-1) for a complete description of the
CosNaming module. The BNF for the constraint expression is provided in Appendix A,
BNF for Naming Constraint Language on page 53.

Contents
The ExtendedNaming Module
ExtendedNaming::PropertyBindingIterator Interface
ExtendedNaming::PropertyIterator Interface
ExtendedNaming::IndexIterator Interface
ExtendedNaming::ExtendedNamingContext Interface

2 Programmer’s Reference for Abstract Interface Definitions

The ExtendedNaming Module

The ExtendedNaming Module
The ExtendedNaming Module defines the ExtendedNaming::PropertyBindingIterator
interface, ExtendedNaming::PropertyIterator interface, and
ExtendedNaming::IndexIterator interface, including supporting type definitions and
exceptions. The ExtendedNaming::NamingContext interface provides additional support
to the original OMG CosNaming::NamingContext interface for the following:

• Binding and setting properties

• Listing and getting properties

• Resolving objects along with their properties

• Removing properties

• Sharing properties

• Searching contexts for objects of certain properties

• Creating indexes for a context

• Administering the capabilities and policies of a context.

Types
The following are defined in the ExtendedNaming Module:

• typedef struct PB {CosNaming::Istring property_name; boolean shareable;}
PropertyBinding;

This structure, ExtendedNaming::PropertyBinding, defines a property name with an
indicator of shareability. It does not include the property’s value.

• struct P {PropertyBinding binding; any value;} Property;

This structure, ExtendedNaming::Property, defines a property name with an indicator
of shareability, along with the property’s value.

• struct ID{CosNaming::Istring propert_name; TypeCode property_type; unsigned
long distance;} IndexDescriptor;

• typedef sequence <CosNaming::Istring> IList;

• typedef sequence <PropertyBinding> PropertyBindingList;

• typedef sequence <Property> PropertyList;

• typedef sequence <IndexDescriptor> IndexDescriptorList;

Exceptions
There are no user exceptions defined in the ExtendedNaming interface.

Chapter 1. Extended Naming Interface Definitions 3

ExtendedNaming::PropertyBindingIterator Interface

ExtendedNaming::PropertyBindingIterator Interface
The ExtendNaming::PropertyBindingIterator interface provides support for
ExtendedNaming property binding iteration.

Intended Usage
An instance of this interface is returned through the
ExtendedNaming::ExtendedNamingContext::list_properties operation if an extended
naming context contains more property bindings than the requested number specified on
the ExtendedNaming::ExtendedNamingContext::list_properties operation. Clients are
expected to utilize the provided concrete implementation of ExtendedNaming to gain
access to this interface. However, subclassed implementations should realize the tight
coupling it maintains with the
ExtendedNaming::ExtendedNamingContext::list_properties operation.

File Stem
xnaming

Directly Inherited Interfaces
SOMObject Class

Indirectly Inherited Interfaces
None.

Types
None.

New Operations
destroy Operation
next_n Operation
next_one Operation

Exceptions
CORBA 1.1 standard exceptions.

4 Programmer’s Reference for Abstract Interface Definitions

destroy Operation

destroy Operation
Destroys the iterator.

IDL Syntax
void destroy ()

Description
Destroys the iterator.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::PropertyBindingIterator Interface

Related Information
list_properties Operation

Chapter 1. Extended Naming Interface Definitions 5

next_n Operation

next_n Operation
Retrieves a specified maximum number of property bindings.

IDL Syntax
boolean next_n (

in unsigned long howMany,
out PropertyBindingList il);

Description
Returns a specified maximum number of property bindings in the il parameter.This
operation is used, in standard CORBA fashion, to obtain the next several name-object
bindings from the extended naming context with which the targeted
PropertyBindingIterator is associated. Calling programs should check the return value for
decision making for further invocations on the iterator. The operation returns FALSE if there
are no more bindings to obtain, indicating to the calling program that it should not invoke
the operation again.

Parameters
howMany

maximum number of bindings.

il
The returned PropertyBindingList.

Return Value
This operation returns a Boolean value where FALSE indicates to the client that there are
no more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::PropertyBindingIterator Interface

Related Information
list_properties Operation

6 Programmer’s Reference for Abstract Interface Definitions

next_one Operation

next_one Operation
Retrieves the next property binding.

IDL Syntax
boolean next_one(out PropertyBinding pb);

Description
Returns the next property binding in the pb parameter. This operation is used, in standard
CORBA fashion, to obtain the next property binding from the extended naming context for
which the targeted PropertyBindingIterator is associated. Calling programs should check
the return value for decision making for further invocations on the iterator. The operation
returns FALSE if there are no more bindings to obtain, indicating to the calling program that
it should not invoke the operation again.

Parameters
pb

The returned PropertyBinding.

Return Value
This operation returns a Boolean value where FALSE indicates to the client that there are
no more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::PropertyBindingIterator Interface

Related Information
list_properties Operation

Chapter 1. Extended Naming Interface Definitions 7

ExtendedNaming::PropertyIterator Interface

ExtendedNaming::PropertyIterator Interface
The ExtendNaming::PropertyIterator interface provides support for ExtendedNaming
property iteration.

Intended Usage
This interface is instantiated and outputted through the
ExtendedNaming::ExtendedNamingContext::get_properties or
ExtendedNaming::ExtendedNamingContext::get_all_properties operations if an
extended naming context contains more properties than the requested number specified on
the ExtendedNaming::ExtendedNamingContext::get_properties or
ExtendedNaming::ExtendedNamingContext::get_all_properties operations. Clients are
expected to utilize the provided concrete implementation of ExtendedNaming to gain
access to this interface. However, subclassed implementations should realize the tight
coupling it maintains with both the
ExtendedNaming::ExtendedNamingContext::get_properties operation and the
ExtendedNaming::ExtendedNamingContext::get_all_properties operation.

File Stem
xnaming

Directly Inherited Interfaces
SOMObject Class

Types
None.

New Operations
destroy Operation
next_n Operation
next_one Operation

Exceptions
CORBA 1.1 standard exceptions.

8 Programmer’s Reference for Abstract Interface Definitions

destroy Operation

destroy Operation
Destroys the iterator.

IDL Syntax
void destroy ()

Description
 Destroys the iterator.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::PropertyIterator Interface

Related Information
get_properties Operation
get_all_properties Operation

Chapter 1. Extended Naming Interface Definitions 9

next_n Operation

next_n Operation
Retrieves a specified maximum number of properties.

IDL Syntax
boolean next_n (

in unsigned long howMany,
out PropertyList pl);

Description
Returns a specified maximum number of properties in the pl parameter.This operation is
used, in standard CORBA fashion, to obtain the next several properties from the extended
naming context with which the targeted PropertyIterator is associated. Calling programs
should check the return value for decision making for further invocations on the iterator.
The operation returns FALSE if there are no more bindings to obtain, indicating to the
calling program that it should not invoke the operation again.

Parameters
howMany

The maximum number of bindings.

pl
The returned PropertyList.

Return Value
This operation returns a Boolean value where FALSE indicates to the client that there are
no more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::PropertyIterator Interface

Related Information
get_properties Operation
get_all_properties Operation

10 Programmer’s Reference for Abstract Interface Definitions

next_one Operation

next_one Operation
Retrieves the next property.

IDL Syntax
boolean ::ExtendedNaming::PropertyIterator::next_one(out Property p);

Description
Returns the next property in the p parameter. This operation is used, in standard CORBA
fashion, to obtain the next property from the extended naming context for which the
targeted PropertyIterator is associated with. Calling programs should check the return
value for decision making for further invocations on the iterator. The operation returns
FALSE if there are no more bindings to obtain, indicating to the calling program that it
should not invoke the operation again.

Parameters
p

The returned Property.

Return Value
This operation returns a Boolean value where FALSE indicates to the client that there are
no more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::PropertyIterator Interface

Related Information
get_properties Operation
get_all_properties Operation

Chapter 1. Extended Naming Interface Definitions 11

ExtendedNaming::IndexIterator Interface

ExtendedNaming::IndexIterator Interface
The ExtendNaming::IndexIterator interface provides support for ExtendedNaming index
iteration.

Intended Usage
This interface interface is instatiated and outputted through the
ExtendedNaming::ExtendedNamingContext::list_indexes operation if an extended
naming context contains more indexes than the requested number specified on the
ExtendedNaming::ExtendedNamingContext::list_indexes operation. Clients are
expected to utilize the provided concrete implementation of ExtendedNaming to gain
access to this interface. However, subclassed implementations should realize the tight
coupling it maintains with the ExtendedNaming::ExtendedNamingContext::list_indexes
operation.

File Stem
xnaming

Directly Inherited Interfaces
SOMObject Class

Types
None.

New Operations
destroy Operation
next_n Operation
next_one Operation

Exceptions
CORBA 1.1 standard exceptions.

12 Programmer’s Reference for Abstract Interface Definitions

destroy Operation

destroy Operation
Destroys the iterator.

IDL Syntax
void destroy ()

Description
 Destroys the iterator.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::IndexIterator Interface

Related Information
list_indexes Operation

Chapter 1. Extended Naming Interface Definitions 13

next_n Operation

next_n Operation
Retrieves a specified maximum number of index descriptors.

IDL Syntax
boolean next_n (

in unsigned long howMany,
out IndexDescriptorList il);

Description
Returns a specified maximum number of bindings.This operation is used, in standard
CORBA fashion, to obtain the next several index descriptors from the extended naming
context for which the targeted IndexIterator is associated. Calling programs should check
the return value for decision making for further invocations on the iterator. The operation
returns FALSE if there are no more bindings to obtain, indicating to the calling program that
it should not invoke the operation again.

Parameters
howMany

The maximum number of bindings.

il
The returned IndexDescriptorList.

Return Value
This operation returns a Boolean value where FALSE indicates to the client that there are
no more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::IndexIterator Interface

Related Information
list_indexes Operation

14 Programmer’s Reference for Abstract Interface Definitions

next_one Operation

next_one Operation
Retrieves the next index descriptor.

IDL Syntax
boolean next_one (out IndexDescriptor p);

Description
Returns the next index descriptor in the p parameter. This operation is used, in standard
CORBA fashion, to obtain the next index descriptor from the extended naming context with
which the targeted IndexIterator is associated. Calling programs should check the return
value for decision making for further invocations on the iterator. The operation returns
FALSE if there are no more bindings to obtain, indicating to the calling program that it
should not invoke the operation again.

Parameters
p

The returned IndexDescriptor.

Return Value
This operation returns a Boolean value where FALSE indicates to the client that there are
no more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::IndexIterator Interface

Related Information
list_indexes Operation

Chapter 1. Extended Naming Interface Definitions 15

ExtendedNaming::ExtendedNamingContext Interface

ExtendedNaming::ExtendedNamingContext Interface
The ExtendNaming::ExtendedNamingContext interface provides support for Extended
Naming NamingContexts and extension to the CosNaming::NamingContext interface.

Intended Usage
The ExtendedNamingContext interface is provided as an abstract interface subclassed
from CosNaming::NamingContext. This interface provides additional functionality beyond
the CosNaming::NamingContext interface. See The ExtendedNaming Module on page
2 for additional information. Clients are expected to utilize the provided concrete
implementation of ExtendedNaming to gain access to this interface. However, clients can
also subclass this interface and provide an additional implementation.

File Stem
xnaming

Directly Inherited Interfaces
CosNaming::NamingContext

Indirectly Inherited Interfaces
SOMObject Class

Types
typedef string Constraint; is a string Indicating the search grammar for property
searching.

typedef char Strings

New Operations
add_index Operation
add_properties Operation
add_property Operation
bind_context_with_properties Operation
bind_with_properties Operation
find_all Operation
find_any Operation
find_any_name_binding Operation
get_all_properties Operation
get_features_supported Operation
get_properties Operation
get_property Operation
list_indexes Operation
list_properties Operation
rebind_context_with_properties Operation
rebind_with_properties Operation
remove_all_properties Operation
remove_index Operation
remove_properties Operation
remove_property Operation
resolve_with_all_properties Operation
resolve_with_properties Operation
resolve_with_property Operation
_get_allowed_object_types Operation

16 Programmer’s Reference for Abstract Interface Definitions

ExtendedNaming::ExtendedNamingContext Interface

_get_allowed_property_names Operation
_get_allowed_property_types Operation

Exceptions
• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName indicates that

the property name is invalid. A property name with length of zero is invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported indicates that the
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName indicates
the property name is in conflict.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;} indicates that a property was not found.

• ExtendedNaming::ExtendedNamingContext::NonSharableProperties indicates that
properties were attempted to be shared and are not shareable properties.

• ExtendedNaming::ExtendedNamingContext::PropertiesNotShared indicates that
properties were not shared.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression
indicates that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound; indicates that a
requested binding was not found.

Chapter 1. Extended Naming Interface Definitions 17

add_index Operation

add_index Operation
Identifies a property to be indexed.

IDL Syntax
void add_index (in IndexDescriptor i);

Description
Identifies a property to be indexed. The index applies to any name-object bindings in the
targeted extended naming context or sub-extended naming contexts up to a depth of
distance, whose property name and property type are specified in
ExtendedNaming::IndexDescriptor i. If distance is set to 0 this operation searches only the
targeted context. Any properties added later to bindings in the target extended naming
context or relevant sub-extended naming contexts of this property name and type are
automatically added to the index.

Parameters
i

The index descriptor to be added.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

ExtendedNaming::ExtendedNamingContext::NotSupported{}; is raised to indicate that
implementation does not support this operation.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

18 Programmer’s Reference for Abstract Interface Definitions

add_properties Operation

add_properties Operation
Adds properties to name-object binding.

IDL Syntax
void add_properties (

in Name n,
in PropertyList s);

Description
Adds properties to name-object binding. Adds or updates multiple properties, specified in
PropertyList props, associated with a name-object binding specified by Name n, in a target
extended naming context. If a property already exists, the property is updated. If a property
does not already exist, a new property is associated with the binding (added).

Note: The sharable flag inside a property’s PropertyBinding has a characteristic of point-
in-time. The sharable flag represents whether the property can be shared at the
point in time it is attempted to be shared. Updating a property with a sharable flag
that is different from what was in existence before the update changes not only the
restrictions on the updated property, but it can result, for example, in the updated
property marked as unshareable, but presently being shared.)

Parameters
n

The Name of the name-object binding.

props
The PropertyList to be added.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName; is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName; is raised
to indicate that the property name is in conflict.

Chapter 1. Extended Naming Interface Definitions 19

add_properties Operation

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

20 Programmer’s Reference for Abstract Interface Definitions

add_property Operation

add_property Operation
Adds a property to name-object binding.

IDL Syntax
void add_property (

in Name n,
in Property prop);

Description
 Adds a property to name-object binding. Adds or updates a single property, specified as
prop, associated with a name-object binding specified by Name n, in a target extended
naming context. If the property already exists the property is updated with the specified
property, prop. If the property does not already exist, then specified property is associated
with the binding (added).

Note: The sharable flag inside a property’s PropertyBinding has a characteristic of 'point
in time'. The sharable flag represents whether or not the property can be shared at
the point in time it is attempted to be shared. Updating a property with a sharable
flag that is different from what was in existence before the update changes not only
change the restrictions on the updated property, but may result, for example, in the
updated property marked unshareable, but presently being shared.)

Parameters
n

The Name of the name-object binding.

prop
The Property to be added.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Chapter 1. Extended Naming Interface Definitions 21

add_property Operation

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

22 Programmer’s Reference for Abstract Interface Definitions

bind_context_with_properties Operation

bind_context_with_properties Operation
Creates a name-NamingContext object binding and associate properties.

IDL Syntax
void bind_context_with_properties (

in Name n,
in ExtendedNamingContext obj,
in PropertyList props);

Description
Binds a naming context with properties. Operates just like the
CosNaming::NamingContext::bind_context operation in that it binds the specified
naming context into the target extended naming context. In addition, it defines properties
associated with the binding in PropertyList props. Naming contexts bound using this
operation participate in name resolution when compound names are resolved.

Parameters
n

The Name of the name-object binding.

obj
The naming context object to be bound.

props
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client continues the operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Rebinding operations unbind the name, then rebind the
name without raising this exception.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Chapter 1. Extended Naming Interface Definitions 23

bind_context_with_properties Operation

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

24 Programmer’s Reference for Abstract Interface Definitions

bind_with_properties Operation

bind_with_properties Operation
Creates a name-object binding and associates properties to the binding.

IDL Syntax
void bind_with_properties (

in Name n,
in SOMObject obj,
in PropertyList prop);

Description
Binds an object with properties. Operates just like the CosNaming::NamingContext::bind
operation in that it binds the specified SOMObject obj into the target extended naming
context. In addition, it defines properties to be associated with the binding in PropertyList
prop (combination of add_properties and bind). A property is replaced if it already exists.

Parameters
n

The Name of the name-object binding.

obj
The SOMObject to be bound.

prop
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Rebinding operations unbind the name, then rebind the
name without raising this exception.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Chapter 1. Extended Naming Interface Definitions 25

bind_with_properties Operation

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

26 Programmer’s Reference for Abstract Interface Definitions

find_all Operation

find_all Operation
Retrieves all name-object bindings satisfying property search constraints.

IDL Syntax
void find_all (

in Constraint c,
in unsigned long distance,
in unsigned long howMany,
out BindingList bl,
out BindingIterator bi);

Description
Outputs each CosNaming::Binding that satisfies property search constraint Constraint c.
It searchs up to a depth of distance for all Bindings that satisfy the given constraint and
puts them into BindingList bl. If distance is set to 0, this operation searches only the
targeted context. Up to howMany name-object bindings are placed into the BindingList bl. If
more than howMany objects are found to satisfy the constraint, the remaining name-object
bindings are placed into the BindingIterator bi.

Parameters
c

The search constraint.

distance
The search depth.

howMany
The maximum number of Bindings to put into bl.

bl
The outputted BindingList.

bi
The outputted BindingIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that the search failed.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 27

find_any Operation

find_any Operation
Retrieves the first bound object that satisfies the given search constraint.

IDL Syntax
SOMObject find_any (

in Constraint c,
in unsigned long distance);

Description
Returns the first bound SOMObject satisfying property search constraint Constraint c. The
returned SOMObject contains properties that satisfy Constraint c. It searchs up to a depth
of distance for a binding that satisfies the given constraint. If distance is set to 0, this
operation searches only the targeted context.

Parameters
c

The search constraint.

distance
The search depth in the Naming Service graph.

Return Value
A SOMObject is returned, which satisfies the property search constraint.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that the search failed.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

28 Programmer’s Reference for Abstract Interface Definitions

find_any_name_binding Operation

find_any_name_binding Operation
Retrieves a name-object binding satisfying property search constraints.

IDL Syntax
void find_any_name_binding (

in Constraint c,
in unsigned long distance,
out Binding bi);

Description
Outputs a CosNaming::Binding satisfying property search constraints Constraint c. The
retrieved CosName::Binding is any name-object binding that contains properties that
satisfy Constraint c. It searches up to a depth of distance for a binding that satisfies the
given constraint. If distance is set to 0, this operation searches only the targeted context.

Parameters
c

The search constraint.

distance
The search depth in the Naming Service graph.

bi
The outputted Binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that a requested binding was not found.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 29

get_all_properties Operation

get_all_properties Operation
Retrieves all properties for a name-object binding.

IDL Syntax
void et_all_properties (

in Name n,
in unsigned long howMany,
out PropertyList props,
out PropertyIterator rest);

Description
Returns all properties for a name-object binding. Returns the properties that are associated
with the name-object binding, specified by Name n, in the target extended naming context.
If the name-object binding contains more than howMany properties, then the remaining
properties are put in ExtendedNaming::PropertyIterator rest. Clients can iterate through the
interator to retrieve the remaining properties.

Parameters
n

The Name of the name-object binding.

howMany
The maximum number of properties to put into props.

props
The returned properties.

rest
The returned PropertyIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

30 Programmer’s Reference for Abstract Interface Definitions

get_all_properties Operation

Related Information
ExtendedNaming::PropertyIterator Interface

Chapter 1. Extended Naming Interface Definitions 31

get_features_supported Operation

get_features_supported Operation
Retrieves the supported features.

IDL Syntax
unsigned short get_features_supported ()

Description
Returns the supported features of an extended naming context. Gets a bit vector that this
extended naming context implementation supports: 0 properties, 1 shared property, 2
searching, 3 indexing, 4 restrictions on object types, 5 restrictions on property types, 6
restrictions on property names, 7 - 15 not used.

Return Value
An unsigned short bit vector is returned indicating supported features.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

32 Programmer’s Reference for Abstract Interface Definitions

get_properties Operation

get_properties Operation
Retrieves property values for the specified property name.

IDL Syntax
void get_properties (

in Name n,
in unsigned long howMany,
in IList inames,
out PropertyList props,
out PropertyIterator rest);

Description
Returns a set of properties for a name-object binding. Returns the properties, with their
property names specified as ExtendedNaming::IList inames, associated with the name-
object binding specified by Name n in the target extended naming context. If the name-
object binding contains more than howMany properties, the remaining properties are put in
ExtendedNaming::PropertyIterator rest. Clients can iterate through the interator to retrieve
the remaining properties.

Parameters
n

The Name of the name-object binding.

howMany
The maximum number of properties to put in props.

inames
The list of property names to be retrieved.

props
The returned properties.

rest
The returned PropertyIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Chapter 1. Extended Naming Interface Definitions 33

get_properties Operation

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyIterator Interface

34 Programmer’s Reference for Abstract Interface Definitions

get_property Operation

get_property Operation
Retrieves the value of the specified property name.

IDL Syntax
void get_property (

in Name n,
in Istring pn,
out Property prop);

Description
Returns a property (value of the property) for a name-object binding. Returns the property,
with its property name specified as CosNaming::Istring pn, associated with the name-object
binding specified by Name n in the target extended naming context.

Parameters
n

The Name of the name-object binding.

pn
The property name to be outputted.

prop
The returned property.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 35

list_indexes Operation

list_indexes Operation
Retrieves all defined indexes.

IDL Syntax
void list_indexes (

in unsigned long howMany,
out IndexDescriptorList il,
out IndexIterator rest);

Description
Returns all indexes defined in the target extended naming context. If any bindings in the
target extended naming context have properties that are part of indexes in a parent context,
those indexes are not listed. Up to howMany indexes are placed into the
ExtendedNaming::IndexDescriptorList il. If more than howMany indexes are found, the
remaining indexes are put into the ExtendedNaming::IndexIterator rest.

Parameters
howMany

The maximum number of indexes.

il
The returned IndexDescriptorList.

rest
The returned IndexIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate that
implementation does not support this operation.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::IndexIterator Interface

36 Programmer’s Reference for Abstract Interface Definitions

list_properties Operation

list_properties Operation
Retrieves all PropertyBindings for a name-object binding.

IDL Syntax
void list_properties (

in Name n,
in unsigned long howMany,
out PropertyBindingList pbl,
out PropertyBindingIterator rest);

Description
Returns all PropertyBindings for a name-object binding. Returns all of the
PropertyBindings (a structural part of an ExtendedNaming::Property) that are
associated with a name-object binding specified by Name n, in the target extended naming
context (including both shared and unshared PropertyBindings). If the name-object
binding contains more than howMany PropertyBindings, the remaining PropertyBindings
are put in ExtendedNaming::PropertyBindingIterator rest.

Parameters
n

The Name of the name-object binding.

howMany
The maximum number of PropertyBindings.

pbl
The returned PropertyBindingList.

rest
The returned PropertyBindingIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyBindingIterator Interface

Chapter 1. Extended Naming Interface Definitions 37

rebind_context_with_properties Operation

rebind_context_with_properties Operation
Re-creates a name-NamingContext object binding and associates properties.

IDL Syntax
void rebind_context_with_properties (

in Name n,
in ExtendedNamingContext obj,
in PropertyList props);

Description
Rebinds a naming context with properties. Operates just like the
CosNaming::NamingContext::rebind_context operation in that it rebinds the specified
naming context into the target extended naming context. In addition, it defines the
properties in PropertyList props to be associated with the binding. If a property is already
associated with the binding, it replaces the existing property with the new property. If the
property is not already associated with the binding, a new property is associated. Existing
properties associated with the binding that are not specified in PropertyList props remain
intact. Naming contexts bound using this operation participate in name resolution when
compound names are resolved.

Parameters
n

The Name of the binding.

obj
The naming context to be bound.

props
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• InvalidName, NotFound, InvalidPropertyName, NotSupported,
ConflictingPropertyName

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

• ExtendedNaming::ExtendedNamingContext::NonSharableProperties is raised to
indicate that properties were attempted to be shared and are not sharable properties.

• ExtendedNaming::ExtendedNamingContext::PropertiesNotShared is raised to
indicate that properties were not shared.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

38 Programmer’s Reference for Abstract Interface Definitions

rebind_context_with_properties Operation

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that a requested binding was not found.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 39

rebind_with_properties Operation

rebind_with_properties Operation
Re-creates a name-object binding and associate properties.

IDL Syntax
void rebind_with_properties (

in Name n,
in SOMObject obj,
in PropertyList props);

Description
Rebinds an object with properties. Operates just like the
CosNaming::NamingContext::rebind in that the specified SOMObject obj is rebound into
the target extended naming context. In addition, it defines the properties in PropertyList
prop to be associated with the binding. If a property is already associated with the binding,
it replaces the existing property with the new property. If the property is not already
associated with the binding, a new property is then associated. Existing properties
associated with the binding that are not specified in PropertyList prop remain intact.

Parameters
n

The Name of the name-object binding for rebinding.

obj
The SOMObject to be bound.

props
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this operation.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

40 Programmer’s Reference for Abstract Interface Definitions

remove_all_properties Operation

remove_all_properties Operation
Removes all properties associated with name-object binding.

IDL Syntax
void remove_all_properties (in Name n);

Description
Removes all properties associated with name-object binding. Resolves Name n in the
target extended naming context and removes all properties associated with the binding. If
any property is a shared property, the sharing relationship is destroyed.

Parameters
n

The Name of the name-object binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 41

remove_index Operation

remove_index Operation
Removes a specified index.

IDL Syntax
void remove_index (in IndexDescriptor i);

Description
Removes a specified index from the target extended naming context. The distance is
ignored in the IndexDescriptor i.

Parameters
i

The index to be removed.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

42 Programmer’s Reference for Abstract Interface Definitions

remove_properties Operation

remove_properties Operation
Removes a set of properties associated with name-object binding.

IDL Syntax
void remove_properties (

in Name n,
in IList plist);

Description
Removes a set of properties associated with name-object binding. Resolves Name n in the
target extended naming context and removes the properties whose property names are
specified by ExtendedNaming::IList plist. If any properties are shared properties, the
sharing relationship is destroyed.

Parameters
n

The Name of the name-object binding.

plist
A list of property names for removal.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;} is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this operation.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 43

remove_property Operation

remove_property Operation
Removes a property associated with name-object binding.

IDL Syntax
void remove_property (

in Name n,
in Istring prop);

Description
Removes a property associated with name-object binding. Resolves Name n in the target
extended naming context and removes the property whose property name is specified by
CosNaming::Istring prop. If the property is a shared property, the sharing relationship is
destroyed.

Parameters
n

The Name of the name-object binding.

prop
The property name.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this operation.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

44 Programmer’s Reference for Abstract Interface Definitions

resolve_with_all_properties Operation

resolve_with_all_properties Operation
Resolves a name-object binding (returns an object associated with a name) and obtains all
associated properties.

IDL Syntax
SOMObject resolve_with_all_properties (

in Name n,
in unsigned long howMany,
out PropertyList props,
out PropertyIterator rest);

Description
Resolves a name-object binding and outputs all associated properties. Operates just like
the CosNaming::NamingContext::resolve operation in that it resolves the specified name-
object binding, specified by CosNaming::Name n, in the target extended naming context. In
addition, it outputs all properties associated with name-object binding. If the name-object
binding contains more than howMany properties, the remaining properties are put in
ExtendedNaming::PropertyIterator rest. This operation is a combination of the resolve
operation and get_all_properties operation.

Parameters
n

The Name of the name-object binding.

howMany
The maximum number of properties to put into props.

props
The outputted properties.

rest
The outputted PropertyIterator.

Return Value
A SOMObject is returned, which is the resolved object.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

Chapter 1. Extended Naming Interface Definitions 45

resolve_with_all_properties Operation

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyIterator Interface

46 Programmer’s Reference for Abstract Interface Definitions

resolve_with_properties Operation

resolve_with_properties Operation
Resolves a name-object binding (returns an object associated with a name) and obtains a
set of associated properties.

IDL Syntax
SOMObject resolve_with_properties (

in Name n,
in unsigned long howMany,
in IList inames,
out PropertyList props,
out PropertyIterator rest);

Description
Resolves a name-object binding and outputs a set of associated properties. Operates just
like the CosNaming::NamingContext::resolve operation in that it resolves the specified
name-object binding, specified by CosNaming::Name n, in the target extended naming
context. It defines properties to be outputted, with their property names specified as
ExtendedNaming::IList inames. If the name-object binding contains more than howMany
properties, the remaining properties are put in ExtendedNaming::PropertyIterator rest.

Intended Usage
This operation is typically not overridden.

Parameters
n

The Name of the name-object binding.

howMany
The maximum number of properties to put into props.

inames
List of property names.

props
The returned properties.

rest
The returned PropertyIterator.

Return Value
A SOMObject is returned, which is the resolved object.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

Chapter 1. Extended Naming Interface Definitions 47

resolve_with_properties Operation

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyIterator Interface

48 Programmer’s Reference for Abstract Interface Definitions

resolve_with_property Operation

resolve_with_property Operation
Resolves a name-object binding (returns an object associated with a name) and obtains an
associated property value.

IDL Syntax
SOMObject resolve_with_property (

in Name n,
in Istring prop,
out any v);

Description
Resolves a name-object binding (returns an object associated with a name) and outputs the
associated property value. Operates just like the CosNaming::NamingContext::resolve
operation in that it resolves the specified name-object binding, specified by
CosNaming::Name n, in the target extended naming context. In addition, it retrieves the
value of the property CosNaming::Istring prop associated with Name n.

Parameters
n

The Name of the name-object binding.

prop
The property name.

v
The outputted property value.

Return Value
A SOMObject is returned, which is the resolved object.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Chapter 1. Extended Naming Interface Definitions 49

resolve_with_property Operation

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

50 Programmer’s Reference for Abstract Interface Definitions

_get_allowed_object_types Operation

_get_allowed_object_types Operation
Retrieves a list of types of objects that can be bound.

IDL Syntax
_IDL_SEQUENCE_TypeCode _get_allowed_object_types ()

Description
Retrieves a list of types of objects that can be bound into the target extended naming
context. An empty list implies no restrictions. This implementation places no restrictions on
object types.

Intended Usage
Clients typically use this operation to determine whether the naming context implementation
places any restrictions on allowed object types.

Return Value
An _IDL_SEQUENCE_TypeCode is returned containing the allowed object types.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Chapter 1. Extended Naming Interface Definitions 51

_get_allowed_property_names Operation

_get_allowed_property_names Operation
Retrieves a list of names of properties that can be added.

IDL Syntax
_IDL_SEQUENCE_string _get_allowed_property_names ()

Description
Retrieves a list of names of properties that can be added to the target extended naming
context. An empty list implies no restrictions.

Return Value
An _IDL_SEQUENCE_string is returned indicating the allowed property names.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

52 Programmer’s Reference for Abstract Interface Definitions

_get_allowed_property_types Operation

_get_allowed_property_types Operation
Retrieves a list of the types of the properties that can be added.

IDL Syntax
_IDL_SEQUENCE_TypeCode _get_allowed_property_types ()

Description
Retrieves a list of the types of the properties that can be added to the target extended
naming context. An empty list implies no restrictions. This implementation places no
restrictions on the type of the allowed property.

Return Value
An _IDL_SEQUENCE_TypeCode is returned indicating the allowed property types.

Exceptions
CORBA 1.1 standard exceptions.

Original Interface
ExtendedNaming::ExtendedNamingContext Interface

Appendix A. BNF for Naming Constraint Language 53

BNF for Naming Constraint Language

Appendix A. BNF for Naming Constraint Language

The Naming Service allows searches based on properties attached to a name object
binding. Service providers register their service and use properties to describe the service
offered. Potential clients can then use a constraint expression to describe the requirements
that service providers must satisfy. Constraints are expressed in a constraint language.
Using the constraint language, you can specify arbitrarily complex expressions that involve
property names and potential values.

The constraint language described below is an excerpt from Appendix B of the Common
Object Services Specification Volume 1 (OMG Document Number 94-1-1). It has been
slightly modified to support future enhancements.

ConstraintExpr : Expr
;

Expr : Expr "or" Expr
| Expr "and" Expr
| Expr "xor" Expr
| '(' Expr ')'
| NumExpr Op NumExpr
| StrExpr Op StrExpr
| NumExpr Op StrExpr
;

NumExpr : NumExpr "+" NumTerm
| NumExpr "-" NumTerm
| NumTerm
;

NumTerm : NumFactor
| NumTerm "*" NumFactor
| NumTerm "/" NumFactor
;

NumFactor : Num
| Identifier
| '(' NumExpr ')'
| '-' NumFactor
;

StrExpr : StrTerm
| StrExpr "+" StrTerm
;

StrTerm : String
| '(' StrExpr ')'
;
;

Op : "==" | "<=" | ">=" | "!=" | "<" | ">"
;

Identifier : Word
;

Word : Letter { AlphaNum }+
;

AlphaNum : Letter
| Digit
| "_"
;

String : "'" { Char }* "'"
;

Num : { Digit}+
| { Digit}+ "." { Digit}*
;

Char : Letter
| Digit
| Other
;

54 Programmer’s Reference for Abstract Interface Definitions

BNF for Naming Constraint Language

Letter : a | b | c | d | e | f | g | h | i
| j | k | l | m | n | o | p | q | r
| s | t | u | v | w | x | y | z | A
| B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S
| T | U | V | W | X | Z
;

Digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;

Other : <Sp> | ~ | ! | @ | # | $ | % | ^ | &
| * | (|) | - | _ | = | + | [| {
|] | } | ; | : | " | \ | | | , | <
| . | > | / | ?
;

Sp : " "
;

The following precedence relations hold in the absence of parentheses, in the order of
lowest to highest:

• or and xor

• and

• not

• + and -

• * and /

• Otherwise, left-to-right precedence

The following are some example constraints:

(1) name == 'ashoo'
(2) name == 'ashoo' and pet == 'flakes'
(3) Fee <= 5 or LowFreq >= 20
(4) DeviceType == 'Car' and Cost < 30000 and color == 'white'

and Year > 1990

 Index 55

Index

_get_allowed_object_types operation 50
_get_allowed_property_names operation 51
_get_allowed_property_types operation 52

A
add_index operation 17
add_properties operation 18
add_property operation 20

B
bind_context_with_properties operation 22
bind_with_properties operation 24
BNF

for Naming Constraint Language 53
precedence relations 54
search constraint 53

C
class

ExtendedNaming::ExtendedNamingContext
15

D
destroy operation

for ExtendedNaming::IndexIterator 12
for ExtendedNaming::PropertyIterator 8

E
ExtendedNaming Module 2
ExtendNaming::ExtendedNamingContext class 15
ExtendNaming::IndexIterator interface 11
ExtendNaming::PropertyBindingIterator interface 3
ExtendNaming::PropertyIterator interface 7

F
find_all operation 26
find_any operation 27
find_any_name_binding operation 28

G
get_all_properties operation 29
get_features_supported operation 31
get_properties operation 32
get_property operation 34

I
interface

ExtendedNaming::ExtendedNamingContext
15

ExtendedNaming::IndexIterator 11
ExtendedNaming::PropertyBindingIterator 3
ExtendedNaming::PropertyIterator 7

L
list_indexes operation 35
list_properties operation 36

M
module

ExtendedNaming 2

N
Naming Service

BNF
for Naming Constraint Language 53
precedence relations 54
search constraint 53

next_n operation
for ExtendedNaming::IndexIterator 13
for ExtendedNaming::PropertyIterator 9

next_one operation
for ExtendedNamin::PropertyIterator 10
for ExtendedNaming::PropertyBindingIterator

6

O
operation

_get_allowed_object_types 50
_get_allowed_property_names 51
_get_allowed_property_types 52
add_index 17
add_properties 18
add_property 20
bind_context_with_properties 22
bind_with_properties 24
destroy

for ExtendedNaming::IndexIterator 12

56 Programmer’s Reference for Abstract Interface Definitions

for ExtendedNaming::PropertyIterator 8
find_all 26
find_any 27
find_any_name_binding 28
get_all_properties 29
get_features_supported 31
get_properties 32
get_property 34
list_indexes 35
list_proterties 36
next_n

for ExtendedNaming::IndexIterator 13
for ExtendedNaming::PropertyIterator 9

next_one
for

ExtendedNaming::PropertyBindingIt
erator 6

for ExtendedNaming::PropertyIterator 10
rebind_context_with_properties 37
rebind_with_properties 39
remove_all_properties 40
remove_index 41
remove_properties 42
remove_property 43
resolve_with_all_properties 44
resolve_with_properties 46
resolve_with_property 48

R
rebind_context_with_properties operation 37
rebind_with_properties operation 39
remove_all_properties operation 40
remove_index operation 41
remove_properties operation 42
remove_property operation 43
resolve_with_all_properties operation 44
resolve_with_properties operation 46
resolve_with_property operation 48

 Index 57

Printed in U.S.A.

.

