Networking | mplementation Notes
4.4BSD Edition

Samuel JLeffler, Wiliam N. Joy, Robert S. Rbry, and Michael J Karels

Computer Systems Research Group
Computer Science Bision
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, CA 94720

ABSTRET

This report describes the internal structure of the odiwg facilities deeloped
for the 4.4BSD ersion of the UNIX* operating system for théX/f. Thesefacilities
are based on geral central abstractions which structure tléemal (user) vie of net-
work communication as well as the internal (system) implementation.

The report documents the internal structure of the oring system. The
“ Berkeley Software Architecture Manual, 4.4BSD EditioPSD:5) preides a descrip-
tion of the user inteafce to the netarking facilities.

Revised June 10, 1993

* UNIX is a trademark of Bell Laboratories.
T DEC, VAX, DECnet, and UNIBJS are trademarks of Digital Equipment Corporation.

SMM:18-2 Networking Implementation Notes

TABLE OF CONTENTS

1. Introduction

2. Overview

3. Goals

4. Internal addressrepresentation
5. Memory management

6. Internal layering

6.1. Sockt layer

6.1.1. Sockt state

6.1.2. Sockt data queues

6.1.3. Sockt connection queuing
6.2. Protocolayer(s)

6.3. Netvork-interface layer
6.3.1. UNIBJUS interbices

7. Socket/protocol interface

8. Protocol/protocol interface
8.1. pr_output

8.2. pr_input

8.3. pr_ctlinput

8.4. pr_ctloutput

9. Protocol/networ k-inter face inter face
9.1. PRacket transmission
9.2. Raclket reception

10. Gateways and routing issues
10.1. Routingables

10.2. Routingable interfce
10.3. Useteve routing policies

11. Raw sockets

11.1. Controblocks
11.2. Inputprocessing
11.3. Outpuprocessing

12. Buffering and congestion control
12.1. Memorymanagement

12.2. Protocobuffering policies
12.3. Queudimiting

12.4. Rclket forwarding

13. Out of band data
14. Trailer protocols
Acknowledgements

References

Networking Implementation Notes SMM:18-3

1. Introduction

This report describes the internal structure adfilities added to the 4.2BSemsion of the UNIX
operating system for theAX, as modified in the 4.4BSD releas€he systemdcilities pravide a uniform
user interfice to netwrking within UNIX. In addition, the implementation introduces a structure for net-
work communications which may be used by system implementors in addingetworking facilities.
The internal structure is not visible to the ysather it is intended to aid implementors of communication
protocols and neterk services by prading a framaork which promotes code sharing and minimizes
implementation ébrt.

The reader is»pected to beamiliar with the C programming language and system guterfas
described in th&erkeley Sftware Architecture Manual, 4.4BSD EditiofJoy86]. Basicunderstanding of
network communication concepts is assumed; where requiseddgitional ideas are introduced.

The remainder of this document piges a description of the system internal®iding, when possi-
ble, those portions which are utilized only by the interprocess communicatititiefs.

2. Overview

If we consider the International Standardg#@izations (SO) Open System Interconnection (OSI)
model of netwrk communication [ISO81] [Zimmermann80], the netking facilities described here cor
respond to a portion of the session layer (layer 3) and all of the transport andkriejwers (layers 2 and
1, respectiely).

The netvork layer preides possibly imperfect data transport services with minimal addressing struc-
ture. Addressingt this level is normally host to host, with implicit orxglicit routing optionally supported
by the communicating agents.

At the transport layer the notions of reliable transtlata sequencing, flo control, and service
addressing are normally include®eliability is usually managed bym@icit acknavledgement of data
delivered. Rilure to acknwledge a transfer results in retransmission of the da¢guencing may be han-
dled by tagging each message handed to theonetayer by asequence numbend maintaining state at
the endpoints of communication to utilize remedi ssquence numbers in reordering data whichvesrout
of order

The session layeaé€ilities may proide forms of addressing which are mapped into formats required
by the transport layegervice authentication and client authentication, &farious systems also priae
services such as data encryption and address and protocol translation.

The folloving sections bgin by describing some of the common data structures and utility routines,
then ekamine the internal layeringThe contents of each layer and its irded are consideredCertain of
the interfices are protocol implementation specifi@r these casesxamples hee been dravn from the
Internet [Cerf78] protocoladmily. Later sections a@r routing issues, the design of thevrsocket interfice
and other miscellaneous topics.

3. Goals

The netvarking system s designed with the goal of supporting multiptetocol familiesand
addressing stylesThis required information to béhidden” in common data structures which could be
manipulated by all the pieces of the systent,vishich required interpretation only by the protocols which
“controlled’ it. Thesystem described here attempts to minimize the use of shared data structures to those
kept by a suite of protocols (@otocol family, and those used for rendems betweerisynchronous’and
“ asynchronousportions of the system (e.g. queues of data @iacsre filled at interrupt time and emptied
based on user requests).

A major goal of the systemas to preide a framwork within which nev protocols and hardare
could be easily be supportedio this end, a great deal offeft has beenx@ended to create utility routines
which hide maw of the more compbe and/or hardvare dependent chores of netking. Latersections
describe the utility routines and the underlying data structurgsrheipulate.

SMM:18-4 Networking Implementation Notes

4. Internal addressrepresentation

Common to all portions of the system ar® tlata structuresThese structures are used to represent
addresses andaious data objectsAddresses, internally are described byghédwaddrstructure,

struct sockaddr {
short sa_dmily; [* data format identifier */
char sa_data[14]; /* address */
¥
All addresses belong to one or ma@adress familiesvhich define their format and interpretatiofihe
sa_familyfield indicates the addresanfily to which the address belongs, andghedatafield contains the
actual data alue. Thesize of the data field, 14 bytesasvselected based on a study of current address for
mats.* Specificaddress formats use ymie structure definitions that define the format of the data field.
The system inteaice supports lger address structures, although addrassly-independent suppordili-
ties, for eample routing and va socket interfices, preide only 14 bytes for address storadg&rotocols
that do not use thosadilities (e.g, the current Unix domain) may usgédardata areas.

5. Memory management

A single mechanism is used for data storage: memoffers, ormtufs. An mbuf is a sructure of
the form:

struct mhf {

struct mhuf *m_next; /* next buffer in chain */

u_long m_ of; [* offset of data */

short m_len; /* amount of data in this nu */
short m_type; /* mbuf type (accounting) */
u_char m_dat[MLEN]; /* data storage */

struct miuf *m_act; /* link in higherlevel mbuf list */

¥
The m_net field is used to chain noifs together on lingd lists, while then_actfield allows lists of miof
chains to be accumulate®y corvention, the miafs common to a single object (foraenple, a paddt) are

chained together with then_net field, while groups of objects are lieét via them_actfield (possibly
when in a queue).

Each miof has a small data area for storing information,dat The m_lenfield indicates the
amount of data, while then_of field is an dfset to the bginning of the data from the base of theufnb
Thus, for gample, the macretod which cowerts a pointer to an nuf to a pointer to the data stored in
the mhuf, has the form

#define mtodt) (®((int)(x) + (x)->m_off))
(note thet parametera C ype cast, which is used to cast the resultant pointer for proper assignment).

In addition to storing data directly in the oils data area, data of page size may be also be stored in
a eparate area of memory¥he miuf utility routines maintain a pool of pages for this purpose and manipu-
late a prvate page map for such pagesn mhuf with an eternal data area may be recognized by thgelar
offset to the data area; this is formalized by the macro M_HA® LWhich is true if the miof whose
address isn has an eternal page clusterAn aray of reference counts on pages is also maintained so that
copies of pages may be made without core to corgirgp(copiesare created simply by duplicating the
reference to the data and incrementing the associated reference counts for theSmageraje data pages
are currently used only when gapg data from a user process into tleerel, and when bringing data in at
the hardvare level. Routineswhich manipulate mifs are not normally veare whether data is stored
directly in the miof data arrayor if it is kept in separate pages.

The folloving may be used to allocate and freeufsb

* | ater \ersions of the system may suppatiable length addresses.

Networking Implementation Notes SMM:18-5

m = m_get(wait, type);

MGET(m, wait, type);
The subroutinen_cet and the macrdMGET each allocate an mhk placing its address im. The
argumentwait is either M_VAIT or M_DONTWAIT according to whether allocation should block or
fail if no mbuf is available. Thetypeis one of the predefined mibtypes for use in accounting of
mbuf allocation.

MCLGET(m);
This macro attempts to allocate anufpage cluster to associate with theufnim. If successful, the
length of the mbf is set to CLSIZE, the size of the page cluster

n=m_free(m);

MFREE(m,n);
The routinem_freeand the macrdMFREE each free a single mb m, and ary associated xernal
storage area, placing a pointer to its successor in the chain it heagsirifran

m_freem(m);
This routine frees an mibchain headed by.

The following utility routines are\ailable for manipulating misf chains:

m = m_cop/(mO, of, len);
Them_copyroutine create a cgpof all, or part, of a list of the mifs inmQ. Lenbytes of data, start-
ing off bytes from the front of the chain, are copi&dhere possible, reference counts on pages are
used instead of core to core copide original miof chain must hae & leastoff + len bytes of
data. Iflenis specified as M_COR L, all the data present, 3kt as before, is copied.

m_cat(m, n);
The miuf chain,n, is gppended to the end of. Where possible, compaction is performed.
m_adj(m, dif);
The mhuf chain,mis adjusted in size bgliff bytes. Ifdiff is non-ngative, diff bytes are shed off
the front of the mbf chain. If diff is negdive, the alteration is performed from back to froMNo
space is reclaimed in this operation; alterations are accomplished by changimgehand m_of
fields of mhufs.

m = m_pullup(mO, size);
After a successful call tm_pullup the miuf at the head of the returned list, is guaranteed to ha
at leastsizebytes of data in contiguous memory within the data area of thé (albowing access via
a pointer, obtained using thentodmacro, and alling the miof to be located from a pointer to the
data area usindtom defined belw). If the original data as less thamsize bytes long,len was
greater than the size of an oflulata area (112 bytes), or required resources wekeilatde, mis 0
and the original miof chain is deallocated.

This routine is particularly useful wheenifying paclet header lengths on receptidror example, if
a paclket is receied and only 8 of the necessary 16 bytes required foala paclet header are pre-
sent at the head of the list of ofb representing the pastk the remaining 8 bytes may beuiled
up” with a singlem_pullupcall. If the call &ils the iwvalid paclket will have been discarded.

By insuring that mbfs alvays reside on 128 byte boundaries, it isagis possible to locate the mnb
associated with a data area by maskirdtaf lov bits of the virtual addressThis allovs modules to store
data structures in nolfis and pass them around without concern for locating the originad witen it
comes time to free the structurlote that this wrks only with objects stored in the internal datéfdy of
the mluf. Thedtommacro is used to ceart a pointer into an mif’s data area to a pointer to the afip

#define dtom(x) ((struct mif *)((int)x & "(MSIZE-1)))
Mbufs are used for dynamically allocated data structures such atssaskwell as memory allocated

for paclets and headersStatistics are maintained on ofbusage and can be wed by users using the
netstaf1) program.

SMM:18-6 Networking Implementation Notes

6. Internal layering

The internal structure of the neivk system is dided into three layersThese layers correspond to
the services praded by the soakt abstraction, those pided by the communication protocols, and those
provided by the hardare interbces. The&eommunication protocols are normally layered into twmore
individual cooperating layers, though yhare collectvely viewed in the system as one layeryding ser
vices supportie d the appropriate soek abstraction.

The following sections describe the properties of each layer in the system and tlaedstéofwhich
each must conform.

6.1. Socket layer

The sockt layer deals with the interprocess communicatamilifies pravided by the systemA
soclet is a bidirectional endpoint of communication whichtigoed” by the semantics of communication
it supports. The system calls described in tBerkeley Software Architecture Manual [Joy86] are used to
manipulate soakts.

A socket consists of the folleing data structure:

struct sockt {

short So_type; /* generic type */

short SO_options; /* from soclet call */

short so_linger; /* time to linger while closing */
short So_state; [* internal state flags */

caddr_t So_pcb; [* protocol control block */

struct protoswso_proto; /*protocol handle */

struct sockt *so_head; /* back pointer to accept soek*/
struct sockt *so_qO; /* queue of partial connections */
short so_qOlen; [* partials on so_q0 */

struct sockt *so_q; /* queue of incoming connections */
short so_glen; /* number of connections on so_q */
short so_qlimit; /* max humber queued connections */
struct sockbf so_rcv; [* receve queue */

struct sockbf so_snd; /* send queue */

short So_timeo; /* connection timeout */

u_short So_error; /* error afecting connection */
u_short so_oobmark; /* chars to oob mark */

short SO_pgrp; [* pgrp for signals */

h

Each sockt contains tw data queuesso_icv andso_snd and a pointer to routines which mide
supporting servicesThe type of the so@l, so_types defined at so&k creation time and used in selecting
those services which are appropriate to supporTlite supporting protocol is selected at siakreation
time and recorded in the satkdata structure for later usBrotocols are defined by a table of procedures,
the protoswstructure, which will be described in detail latér pointer to a protocol-specific data structure,
the “protocol control blocK,is dso present in the soek structure.Protocols control this data structure,
which normally includes a back pointer to the parent sbskucture to allw easy lookup when returning
information to a user (forxample, placing an error number in @ eror field). Theother entries in the
soclet structure are used in queuing connection requesigating user requests, storing setckharacter
istics (e.g.options supplied at the time a setks created), and maintaining a seitkdate.

Processesrendezwus at a soak” in mary instances. & instance, when a process wishes to
extract data from a soek's receve queue and it is emptyr lacks suicient data to satisfy the request, the
process blocks, supplying the address of the veagieue as await channel’ to be used in notification.
When data arvies for the process and is placed in the st'skqueue, the bloadd process is identified by
the fact it is wvaiting “on the queué.

Networking Implementation Notes SMM:18-7

6.1.1. Socket state
A socket’s gate is defined from the folldng:

#define SS_NOFDREF 0x001 /*no file table ref apmore */

#define SS_ISCONNECTED 0x002 /*soclet connected to a peer */
#define SS_ISCONNECTING 0x004 /*in process of connecting to peer */
#define SS_ISDISCONNECTINGOx008 /*in process of disconnecting */
#define SS_CANTSENDMORE 0x010 /*cantsend more data to peer */
#define SS_CANTRCVMORE 0x020 /*cantreceve nore data from peer */

#define SS_RCATMARK 0x040 /* at mark on input */
#define SS_PRIV 0x080 /*privileged */
#define SS_NBIO 0x100 /*non-blocking ops */
#define SS_ASYNC 0x200 /*async i/o notify */

The state of a soek is manipulated both by the protocols and the user (through system \d&lish.
a ocket is created, the state is defined based on the type d@tsdtkiay change as control actions are
performed, for gample connection establishmetitmay also change according to the type of input/output
the user wishes to perform, as indicated by options seffevith “Non-blocking” 1/0 impliesthat a pro-
cess should nver be Hocked to avait resources.Instead, ay call which would block returns prematurely
with the error EMDULDBLOCK, or the service request may be partially fulfilled, e.g. a request for more
data than is present.

If a process requeste@synchronous’notification of eents related to the soek the SIGIO signal
is posted to the process when sugbnés occur An event is a change in the saatis date; ekamples of
such occurrences are: space becomuaijadble in the send queue,wmelata aailable in the receie queue,
connection establishment or disestablishment, etc.

A socket may be mard ‘privileged’ if it was created by the supaser Only privileged sockts
may bind addresses in yifeged portions of an address space or wae” sockets to access\er levels
of the netvork.

6.1.2. Socket data queues

A socket’s data queue contains a pointer to the data stored in the queue and other entries related to
the management of the daf@he followving structure defines a data queue:

struct sockbf {

u_short sb_cc; /* actual chars in wffer */

u_short sb_hiat; /* max actual char count */
u_short sb_mbcnt; /* chars of minfs used */

u_short sb_mbmax; /* max chars of mbfs to use */
u_short sb_lwat; /* low water mark */

short sb_timeo; /* timeout */

struct miuf *sb_mb; /* the mhuf chain */

struct procsb_sel; [*process selecting read/write */
short sb_flags; /* flags, see belw */

h

Data is stored in a queue as a chain ofifis\b Theactual count of data characters as well as high and
low water marks are used by the protocols in controlling the éibodata. Theamount of biffer space
(characters of mifs and associated data pages) is also recorded along with the liniffematiocation.
The sockt routines cooperate in implementing thenfloontrol polioy by blocking a process when it
requests to send data and the higiteawmark has been reached, or when it requests toeab¢a and less
than the lav water mark is present (assuming non-blocking 1/0O has not been specified).*

* The lov-water mark is alays presumed to be 0 in the current implementation.

SMM:18-8 Networking Implementation Notes

When a soolt is created, the supporting protocodsenes’ space for the send and regeiqueues
of the sockt. Thelimit on buffer allocation is set somat higher than the limit on data characters to
account for the granularity ofulfer allocation. The actual storage associated with a sbclueue may
fluctuate during a soek's lifetime, kut it is assumed that this resation will aways allav a protocol to
acquire enough memory to satisfy the higktev marks.

The timeout and selecalues are manipulated by the setckoutines in implementingavious pofr
tions of the interprocess communicatioasilities and will not be described here.

Data queued at a saztkis stored in one of wdayles. Stream-orientesoclets queue data with no
addresses, headers or record boundaiié® data are in mis linked through then_net field. Buffers
containing access rights may be present within the chain if the underlying protocol supports passage of
access rightsRecord-oriented soeks, including datagram sceik, queue data as a list of patsk the sec-
tions of packts are distinguished by the types of thaufalzontaining themThe mlufs which comprise a
record are linkd through then_net field; records are lirkd from them_actfield of the first mbf of one
paclet to the first mbf of the net. Eachpaclet begins with an mbf containing the‘from’” address if the
protocol prides it, then aybuffers containing access rights, and finally auoffers containing datalf a
record contains no data, no datdférs are required unless neither address nor access rights are present.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources:

#define SB_LOCK 0x01 /*lock on data queue (so_rcv only) */
#define SB_\ANT 0x02 /* someone is witing to lock */
#define SB_WIT 0x04 /* someone is &iting for data/space */
#define SB_SEL 0x08 /*buffer is selected */

#define SB_COLL 0x10 /*collision selecting */

The last tvo flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queuing

In dealing with connection oriented setk (e.g. SOCK_STREAM) the twends are considered dis-
tinct. Oneend is termedctive and generates connection requesthe other end is callepassiveand
accepts connection requests.

From the pasge sde, a sockt is marked with SO_ACEPTCONN when &stencall is made, creat-
ing two queues of soaks:so_qOfor connections in progress ard_qgfor connections already made and
awadting user acceptanceAs a protocol is preparing incoming connections, it creates asetkicture
gueued orso_qOby calling the routinsonavconr(). Whenthe connection is established, the sickruc-
ture is then transferred sm_q making it available for anaccept

If an SO_ACCEPTCONN soadkt is closed with so@ts on eitheso_qOor so_q these soadkts are
dropped, with notification to the peers as appropriate.

6.2. Protocol layer(s)

Each sockt is created in a communications domain, which usually implies both an addressing struc-
ture (addressaimily) and a set of protocols which implemeatigus sockt types within the domain (pro-
tocol family). Eachdomain is defined by the follang structure:

struct domaif

int dom_family; I* PF_Xxx */
char *dom_name;
int (*dom_init)(); [* initialize domain data structures */

int (*dom_eternalize)(); /*externalize access rights */

int (*dom_dispose)(); /* dispose of internalized rights */
struct protoswdom_protosw*dom_protoswNPRTOSW.
struct domairfdom_next;

Networking Implementation Notes SMM:18-9

At boot time, each domain configured into tleeriel is added to a liekl list of domain.The initial-
ization procedure of each domain is then callfter that time, the domain structure is used to locate pro-
tocols within the protocolaimily. It may also contain procedure references fdemalization of access
rights at the receing soclet and the disposal of access rights that are nowegcei

Protocols are described by a set of entry points and certaietsosible characteristics, some of
which are used in deciding which setkype(s) the may support.

An entry in the ‘protocol switch’ table &ists for each protocol module configured into the system.
It has the follaving form:

struct protosw {

short pr_type; [* socket type used for */
struct domairfpr_domain; /*domain protocol a member of */
short pr_protocol; * protocol number */
short pr_flags; I* socket visible attrilutes */

[* protocol-protocol hooks */
int (*pr_input)(); [* input to protocol (from bebw) */
int (*pr_output)(); [* output to protocol (from abe) */
int (*pr_ctlinput)(); /* control input (from bela) */

int (*pr_ctloutput)(); [* control output (from abee) */
[* userprotocol hook */

int (*pr_usrreq)(); [* user request */
/* utility hooks */
int (*pr_init)(); [* initialization routine */
int (*pr_fasttimo)(); /*fast timeout (200ms) */
int (*pr_slontimo)(); /* slow timeout (500ms) */
int (*pr_drain)(); * flush ary excess space possible */

h

A protocol is called through thar_init entry before apother Thereafter it is calledvery 200 mil-
liseconds through ther_fasttimoentry and eery 500 milliseconds through ther_slowtimofor timer
based actionsThe system will call th@r_drain entry if it is lov on gpace and this should tlwcaway any
non-critical data.

Protocols pass data between themeselas chains of mlfs using thepr_input and pr_outputrou-
tines. Pr_inputpasses data up (#ards the user) anpr_outputpasses it don (tovards the netwrk); con-
trol information passes up andvdwo on pr_ctlinput and pr_ctloutput The protocol is responsible for the
space occupied by wof the aguments to these entries and must either pass #@ronwv dispose of it(On
output, the lavest level reached must freeulfers storing the guments; on input, the higheswékis
responsible for freeinguffers.)

Thepr_usrreqroutine interces protocols to the satkcode and is described belo
Thepr_flagsfield is constructed from the follang values:

#define PR_AOMIC 0x01 /* exchange atomic messages only */
#define PR_ADDR 0x02 /* addresses gén with messages */
#define PR_CONNREQIRED 0x04 /* connection required by protocol */
#define PR_WNTRCVD 0x08 /* want PRJ_RCVD calls */

#define PR_RIGHTS 0x10 /* passes capabilities */

Protocols which are connection-based specify the PR_CONNREED flag so that the soek routines
will never attempt to send data before a connection has been establisiled. PR_VWANTRCVD flag is
set, the soakt routines will notify the protocol when the user has resti@ata from the soakt’s receve
gueue. Thisllows the protocol to implement ackmiedgement on user receipt, and also update windo
ing information based on the amount of spaeslable in the receie queue. ThePR_ADDR field indi-
cates that andata placed in the soeks receve queue will be preceded by the address of the seridey
PR_ATOMIC flag specifies that eaalserrequest to send data must be performed in a sprgtecol send
request; it is the protocal’ responsibility to maintain record boundaries on data to be SEme

SMM:18-10 Netvorking Implementation Notes

PR_RIGHTS flag indicates that the protocol supports the passing of capaltitittes, currently used only
by the protocols in the UNIX protocarnily.

When a soad#t is created, the soekroutines scan the protocol table for the domain looking for an
appropriate protocol to support the type of siddeing createdThe pr_typefield contains one of the pos-
sible sockt types (e.g. SOCK_STREAM), while tbe_domainis a back pointer to the domain structure.
Thepr_protocolfield contains the protocol number of the protocol, normally a welvknalue.

6.3. Network-interface layer

Each netwrk-interface configured into a system defines a path through whicletgatiay be sent
and receied. Normallya hardware deice is associated with this intade, though there is no requirement
for this (for xample, all systems ka a ®ftware ‘loopback’ interface used for detgging and perfer
mance analysis)In addition to manipulating the hardve deice, an interice module is responsible for
encapsulation and decapsulation oy sink-layer header information required to detia message to its
destination. Theelection of which intesfte to use in defering paclets is a routing decision carried out at
a higher level than the netark-interface layer An interface may hee aldresses in one or more address
families. Theaddress is set at boot time usingaatl on a sockt in the appropriate domain; this operation
is implemented by the protocarhily, after verifying the operation through theudee ioctl entry

An interface is defined by the folldong structure,

struct ifnet {

char *if_name; /* name, e.g.'én” or “lo’’ */
short if_unit; [* sub-unit for laver level driver */
short if _mtu; [* maximum transmission unit */
short if_flags; /* up/down, broadcast, etc. */
short if timer; /* time 'til if_watchdog called */
struct ifaddr *if_addrlist; /* list of addresses of inteate */
struct ifqueuef_snd; [* output queue */

int (*if_init)(); [* init routine */

int (*if_output)(); [* output routine */

int (*if__ioctl)(); [* ioctl routine */

int (*if_reset)(); /* bus reset routine */

int (*if_watchdog)(); /*timer routine */

int if_ipackets; [*paclets receied on interface */
int if_ierrors; [* input errors on intedce */

int if_opaclets; [*paclets sent on inteafe */

int if_oerrors; [* output errors on integfce */

int if_collisions; [* collisions on csma inteates */

struct ifnet*if_next;
¥
Each interhce address has the follmg form:

struct ifaddr {
struct sockaddifa_addr; /*address of intesaice */
union {
struct sockaddifu_broadaddr;
struct sockaddifu_dstaddr;
}ifa ifu;
struct ifnet*if a_ifp; [* back-pointer to integfce */
struct ifaddr *ifa_net; /* next address for intesice */
%
#define ib_broadaddr & ifu.ifu_broadaddr /broadcast address */
#define ih_dstaddr d_ifu.ifu_dstaddr [other end of p-to-p link */

The protocol generally maintains this structure as part ofgaratructure containing additional informa-
tion concerning the address.

Networking Implementation Notes SMM:18-11

Each inter&ce has a send queue and routines used for initializ#tiont, and output,if output If
the interfice resides on a systemsbthe routing_resetwill be called after a s reset has been performed.
An interface may also specify a timer routifewatchdag; if if_timeris non-zero, it is decremented once
per second until it reaches zero, at which time thekdog routine is called.

The state of an inteate and certain characteristics are stored iif tiagsfield. Thefollowing val-
ues are possible:

#define IFF_UP 0x1 [* interface is up */
#define IFF_BRADCAST 0x2 /* broadcast is possible */
#define IFF_DEBG 0x4 /* turn on delngging */
#define IFF_LOOPBCK 0x8 [* is a loopback net */

#define IFF_POINDPOINT 0x10 /* interface is point-to-point link */
#define IFF_NORAILERS 0x20 /* avoid use of trailers */

#define IFF_RINNING 0x40 /* resources allocated */

#define IFF_N®@RP 0x80 /* no address resolution protocol */

If the interbice is connected to a nemk which supports transmission diroadcast paclets, the
IFF_BROADCAST flag will be set and thiéa_broadaddrfield will contain the address to be used in send-
ing or accepting a broadcast patklf the interbice is associated with a point-to-point haadsvlink (for
example, a DEC DMR-11), the IFF_POIRPOINT flag will be set andfa_dstaddrwill contain the
address of the host on the other side of the connectibaese addresses and the local address of the inter
face, if_addr, are used in filtering incoming paets. Theinterface sets IFF_BNNING after it has allo-
cated system resources and posted an initial read onuive demanagesThis state bit is used to/@id
multiple allocation requests when an inéeds address is changedihe IFF_NORAILERS flag indicates
the interbice should refrain from using teailer encapsulation on outgoing pa&t&, or (where penost
negotiation of trailers is possible) that trailer encapsulations should not be requestedprotocols are
described in section 14The IFF_NQ\RP flag indicates the intexfe should not use @address resolution
protocol’ i n mapping internetwrk addresses to local naivik addresses.

Various statistics are also stored in the irsteef structure These may be weed by users using the
netstaf1) program.

The interace address and flags may be set with the SIGKTEIR and SIOCSIFFL&S ioctls.
SIOCSIFADDR is used initially to define each intades address; SIOGSIFFLAS can be used to mark an
interface davn and perform site-specific configuratiomhe destination address of a point-to-point link is
set with SIOCSIFDSADDR. Correspondingperations xst to read eachalue. Protocofamilies may
also support operations to set and read the broadcast adtireaddition, the SIOCGIFCONFoctl
retrieves a st of interface names and addresses for all iats$ and protocols on the host.

6.3.1. UNIBUS interfaces

All hardware related inteafces currently reside on the UNUB. Consequentlg common set of util-
ity routines for dealing with the UNIBS has been geloped. EachUNIBUS interfaice utilizes a structure
of the followving form:

struct ifubinfo{

short if _uban; [*uba number */

short if_hlen; /*local net header length */
struct uba_rgs *iff_uba; [*uba r@s, in vm */

short if_flags; /*used during uballos’*/

¥
Additional structures are associated with each vecaid transmit bffer, normally one each per intade;
for read,

SMM:18-12 Netvorking Implementation Notes

struct ifrw{
caddr_t ifrw_addr; [* virt addr of header */
short ifrw_bdp; /* unibus bdp */
short ifrw_flags; [* type, etc. */
#define IFRV_W 0x01 [* is a transmit bffer */
int ifrw_info; /* value from ubaalloc */
int ifrw_proto; [* map register prototype */
struct ptefifrw_mr; /* base of map gsters */
¥

and for write,

struct ifxmt{

struct ifrwifrw;

caddr_t ifw_base; [* virt addr of tuffer */

struct ptefw_wmap[IF_MAXNUBAMRY]; /* base pages for output */
struct miuf *ifw_xtofree; [* pages being dmd’out */

short ifw_xsvapd; /*mask of clusters sapped */
short ifw_nmr; [* number of entries in wmap */

¥

#define ifw_addr ifrw.ifrw_addr
#define ifw_bdp ifrw.ifrw_bdp
#define ifw_flags ifrw.ifrw_flags
#define ifw_info ifrw.ifrw_info
#define ifw_proto ifrw.ifrw_proto
#define ifw_mr ifrw.ifrw_mr

One of each of these structures isvamiently packaged for inteates with single uffers for each direc-
tion, as follavs:

struct ifubg{

struct ifubinfoifu_info;
struct ifrwifu_r;
struct ifxmtifu_xmt;

2

#define ifu_uban ifu_info.iff_uban
#define ifu_hlen ifu_info.iff_hlen
#define ifu_uba ifu_info.iff_uba
#define ifu_flags ifu_info.iff_flags
#define ifu_w ifu_xmt.ifrw
#define ifu_xtofreeifu_xmt.ifw_xtofree

The if_ubinfo structure contains the general information needed to characterize the 1/0O-mapped

buffers for the deice. Inaddition, there is a structure describing eaatfeln including UNIBUS resources

held by the intedce. Suicient memory pages andi® map rgisters are allocated to eaatifier upon ini-
tialization according to the maximum patksize and header lengtifhe kernel virtual address of the
buffer is held inifrw_addr, and the map misters bgin atifrw_mr. UNIBUS map rgisterifrw_mr[-1]

maps the local netwvk header ending on a page boundaWIBUS data paths are resedvfor read and

for write, gven by ifrw_bdp. The prototype of the map gisters for read and for write isved in
ifrw_proto.

When write transfers are not at least half-full pages on page boundaries, the data are just copied into
the pages mapped on the UNIB and the transfer is starteld.a write transfer is at least half a page long
and on a page boundaiyNIBUS page table entries areagyped to reference the pages, and then the initial
pages are remapped frafw_wmapwhen the transfer complete$he mhufs containing the mapped pages
are placed on thiéw_xtofreequeue to be freed after transmission.

Networking Implementation Notes SMM:18-13

When read transfers\@ & least half a page of data to be input, page frames are allocated from a net-
work page list and traded with the pages already containing the data, mapping the allocated pages to
replace the input pages for thexne&NIBUS data input.

The following utility routines are \ailable for use in writing netark interface drvers; all use the
structures described alm

if _ubaminit(ifubinfo, uban, hlen, nmifr, nr, ifx, nx);
if_ubainit(ifuba, uban, hlen, nmr);

if _ubaminitallocates resources on UNIEB adapteiuban soring the information in théfubinfo,
ifrv and ifxmt structures referencedlhe ifr andifx parameters are pointers to arraysfof and
ifxmt structures whose dimensions ameand nx, respectiely. if ubainitis a simpler backwards-
compatible intedice used for hardare with single bffers of each typeThey are called only at boot
time or after a UNIBIS reset.One data path (iffered or unhbffered, depending on thé&u_flags
field) is allocated for eactulfer. Thenmrparameter indicates the number of UNIB mapping rg-
isters required to map a maximal sized ghanto the UNIRIS, while hlen specifies the size of a
local netvork headerif any, which should be mapped separately from the data (see the description of
trailer protocols in chapter 14pufiicient UNIBUS mapping rgisters and pages of memory are allo-
cated to initialize the input data path for an initial re&dr the output data path, mappingisers
and pages of memory are also allocated and mapped onto thé&JBNIBhepages associated with
the output data path are held in reseirvthe e/ent a write requires cging non-page-aligned data
(seeif_wubaputbelow). If if_ubainit is called with memory pages already allocatedy th@l be
used instead of allocating weones (this normally occurs after a UNUB reset).A 1 is returned
when allocation and initialization are successful, O otherwise.

m = if_ubaget(ifubinfo, iff totlen, of0, ifp);
m = if_rubaget(ifuba, totlen, &3, ifp);

if ubaget andif _rubaget pull input data out of an intex€e receie huffer and into an miff chain.
The first interbce passes pointers to ffgbinfo structure for the intesice and thé&rw structure for
the recere huffer; the second call may be used for singlffdred deices. totlenspecifies the length
of data to be obtained, not counting the local oetvwheader If off0 is non-zero, it indicates a byte
offset to a trailing local neterk header which should be copied into a separatd arid prepended
to the front of the resultant mbchain. When the data amount to at least a half a page, the pre
ously mapped data pages are remapped into thsmabd swapped with fresh pages, thusmling
ary copy. The recering interface is recorded afp, a pointer to arifnet structure, for the use of the
receving network protocol. A O return \alue indicates aaflure to allocate resources.

if wubaput(ifubinfo, ifx, m);
if wubaput(ifuba, m);
if _ubaputandif_wubaputmap a chain of mifs onto a neterk interface in preparation for output.
The first interfce is used by d&es with multiple transmit uffers. Thechain includes anlocal
network headerwhich is copied so that it resides in the mapped and aligned I/O dpaypealigned
data that are page-aligned in the outpuffdy are mapped to the UNUES in place of the normal
buffer page, and the correspondinguits placed on a queue to be freed after transmisdany.
other mlufs which contained non-page-sized data portions are copied to the I/O space and then freed.
Pages mapped from a prieus output operation (no longer needed) are unmapped.

SMM:18-14 Netvorking Implementation Notes

7. Socket/protocol interface

The interhice between the sastkroutines and the communication protocols is througipthesrreq
routine defined in the protocol switch tablEhe following requests to a protocol module are possible:

#define PR_ATTACH
#define PR_DETACH
#define PR_BIND /* bind soclet to address */
#define PR_LISTEN /* listen for connection */

0 [* attach protocol */

1
2
3

#define PR_CONNECT 4 [* establish connection to peer */

5
6
7
8
9

/* detach protocol */

#define PR_ACCEPT [* accept connection from peer */
#define PR_DISCONNECT /* disconnect from peer */

#define PR_SHUTDONN /*won’t send ay more data */
#define PR_RCVD /* have taken data; more room no*/
#define PR_SEND /* send this data */

#define PR_ABORT 10 ¥ abort (fast DISCONNECTDETATCH) */
#define PR_CONTROL 11 [* control operations on protocol */
#define PR_SENSE 12 [* return status into m */

#define PR_RCVOOB 13 /* retrieve aut of band data */
#define PR_SENDOOB 14 /* send out of band data */
#define PR_SOCKADDR 15 /* fetch soclet’s address */

#define PR_PEERADDR 16 /* fetch peers aldress */

#define PR_CONNECT2 17 /* connect tvo sockets */

/* begin for protocols internal use */

#define PR_FASTTIMO 18 /* 200ms timeout */

#define PR_SLONTIMO 19 /* 500ms timeout */

#define PR_PROTORCV 20 /* receve from belav */

#define PR_PROTOSEND 21 /* send to belw */
A call on the user request routine is of the form,

error = (*protosw[].pr_usrreq)(so, req, m, adights);
int error; struct soait *so; int req; struct mif *m, *addr, *rights;

The miuf data chaimm is supplied for output operations and for certain other operations where it is to
receve a esult. Theaddressaddr is supplied for address-oriented requests such a8 BRID and
PRU_CONNECT Therights parameter is an optional pointer to anuibhain containing useapecified
capabilities (see theendmsgand recvmsgsystem calls).The protocol is responsible for disposal of the
data miof chains on output operationé non-zero return aue gves a UNIX error number which should

be passed to highenig software. Theollowing paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a setkwith thesodket system call) the protocol module is called with
this request.lt is the responsibility of the protocol module to allocatg @sources necessaryhe
“ attach’ request will alvays precede anof the other requests, and should not occur more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the timestisatdeted.The protocol
module may deallocate ynesources assigned to the setck

PRU_BIND
When a soo#t is initially created it has no address bound tdtis request indicates that an address
should be bound to axisting soclet. Theprotocol module musterify that the requested address is
valid and aailable for use.

PRU_LISTEN
The ‘listen” request indicates the user wishes to listen for incoming connection requests on the asso-
ciated sockt. Theprotocol module should perform yarstate changes needed to carry out this
request (if possible)A “‘listen” request aliays precedes a request to accept a connection.

Networking Implementation Notes SMM:18-15

PRU_CONNECT
The ‘connect’ request indicates the useamis to a establish an associatidrhe addr parameter
supplied describes the peer to be connectedhe. efect of a connect request magry depending
on the protocol.Virtual circuit protocols, such as TCP [Postel81b], use this request to initiate estab-
lishment of a TCP connectiorDatagram protocols, such as UDP [Postel80], simply record the
peers aldress in a pvete data structure and use it to tag all outgoing @iackThereare no restric-
tions on hav mary times a connect request may be used after an atthehprotocol supports the
notion of multi-casting it is possible to use multiple connects to establish a multi-cast griter-
natively, an association may be brek by a PR_DISCONNECT request, and amessociation cre-
ated with a subsequent connect request; all without ge@sgrand creating a mesocket.

PRU_ACCEPT
Following a successful RR LISTEN request and the aral of one or more connections, this request
is made to indicate the user has accepted the first connection on the queue of pending connections.
The protocol module should fill in the supplied addresfeb with the address of the connected
party.
PRU_DISCONNECT
Eliminate an association created with d PRONNECT request.

PRU_SHUTDONN
This call is used to indicate no more data will be sent and/owvedcggihe addr parameter indicates
the direction of the shutdm, as encoded in theoshutdowrsystem call). The protocol mayat its
discretion, deallocate wrdata structures related to the shutdoand/or notify a connected peer of
the shutdan.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes theARRRW
CVD flag. When a user renves data from the recee queue this request will be sent to the protocol
module. Itmay be used to trigger ackmedgements, refresh winaing information, initiate data
transfer etc.

PRU_SEND
Each user request to send data is translated into one or mdreéSERD requests (a protocol may
indicate that a single user send request must be translated into a sildgleEND request by speci-
fying the PR_AOMIC flag in its protocol description)The data to be sent is presented to the proto-
col as a list of miofs and an address is, optionalypplied in theaddr parameter The protocol is
responsible for preserving the data in the stiskeend queue if it is not able to send it immedigtely
or if it may need it at some later time (e.g. for retransmission).

PRU_ABORT
This request indicates an abnormal termination of servite protocol should delete yaexisting
association(s).

PRU_CONTROL
The “control” request is generated when a user performs a UdiXsystem call on a soek (and
the ioctl is not intercepted by the setkoutines).It allows protocol-specific operations to be pro-
vided outside the scope of the common sbakterfice. Theaddr parameter contains a pointer to a
static lernel data area where redat information may be obtained or returnethe m parameter
contains the actuabctl request code (note the non-standard callingadion). Therights parame-
ter contains a pointer to dmet structure if theoctl operation pertains to a particular netl inter
face.

PRU_SENSE
The *sense’ request is generated when the useresanfstat system call on a soek it requests
status of the associated setk Thiscurrently returns a standastht structure. Ittypically contains
only the optimal transfer size for the connection (basedufferbsize, windawing information and
maximum packt size). Them parameter contains a pointer to a statimkl data area where the sta-
tus huffer should be placed.

SMM:18-16 Netvorking Implementation Notes

PRU_RCVOOB
Any “‘out-of-band’ data presently\ailable is to be returnedAn mhuf is passed to the protocol
module, and the protocol should either place data in thd prbattach me& mbufs to the one sup-
plied if there is insdicient space in the single mb An error may be returned if out-of-band data is
not (yet) &ailable or has already been consuméthe addr parameter contains amptions such as
MSG_PEEK to ramine data without consuming it.

PRU_SENDOOB
Like FRU_SEND, lut for out-of-band data.

PRU_SOCKADDR
The local address of the s@&tks returned, if anis aurrently bound to it.The address (with protocol
specific format) is returned in tlaeldr parameter

PRU_PEERADDR
The address of the peer to which the sbdk connected is returned’he sockt must be in a
SS_ISCONNECTED state for this request to be made to the protbleladdress format (protocol
specific) is returned in treeddr parameter

PRU_CONNECT2
The protocol module is supplieddveockets and requested to establish a connection betweendhe tw
without binding ag addresses, if possibleThis call is used in implementing tisedetpair(2) sys-
tem call.

The following requests are used internally by the protocol modules and \@egeaerated by the
soclet routines. In certain instances, theare handed to ther_usrreq routine solely for covenience in
tracing a protoco$ goeration (e.g. PB_SLONTIMO).

PRU_FASTTIMO
A *‘fast timeout’has occurred.This request is made when a timeout occurs in the prosquolfas-
timoroutine. Theaddr parameter indicates which timetpéred.

PRU_SLONTIMO
A ‘'slow timeout’ has occurred.This request is made when a timeout occurs in the prasocol’
pr_slowtimoroutine. Theaddr parameter indicates which timegpéred.

PRU_PROTORCV
This request is used in the protocol-protocol imesf not by the routinedt requests reception of
data destined for the protocol and not the.ubker protocols currently use thigdility.

PRU_PROTOSEND
This request alles a protocol to send data destined for another protocol module, not arbiser
details of hav data is markd *addressed to protocoinstead of‘addressed to uséire left to the
protocol modulesNo protocols currently use thiadility.

8. Protocol/protocol interface

The interbce between protocol modules is throughpheausrreq pr_input pr_output pr_ctlinput,
andpr_ctloutputroutines. Thecalling corventions for all lut thepr_usrreqroutine are xpected to be spe-
cific to the protocol modules and are not guaranteed to be consistent across paotdies. f Vi& will
examine the coventions used for some of the Internet protocols in this section asaapke.

8.1. pr_output
The Internet protocol UDP uses the eention,
error = udp_output(inp, m);
int error; struct inpcb *inp; struct mib*m;
where theinp, “internetprotocol control block”, passed between modules geys per connection state
information, and the mif chain contains the data to be sedDP performs consistepchecks, appends

its headercalculates a checksum, etc. before passing theepack UDP is based on the Internet Protocol,
IP [Postel81a], as its transpokilDP passes a paekto the IP module for output as folls:

Networking Implementation Notes SMM:18-17

error = ip_output(m, opt, ro, flags);
int error; struct mbf *m, *opt; struct route *ro; int flags;

The call to IPS autput routine is more complicated than that for JBPhefits the additional ark
the IP module must doThe m parameter is the data to be sent, andfitgparameter is an optional list of
IP options which should be placed in the IP ghdleader Thero parameter is is used in making routing
decisions (and passing them back to the caller for use in subsequentTdadig)nal parameteflags con-
tains flags indicating whether the user isva#id to transmit a broadcast patland if routing is to be per
formed. Thebroadcast flag may be inconsequential if the underlying feasddoes not support the notion
of broadcasting.

All output routines return 0 on success and a UNIX error numbeaifuad occurred which could be
detected immediately (nauffer space \ailable, no route to destination, etc.).

8.2. pr_input
Both UDP and TCP use the folling calling comention,

(void) (*protosw(].pr_input)(m, ifp);
struct mhuf *m; struct ifnet *ifp;

Each miof list passed is a single patko be processed by the protocol modulke interbce from which
the packt was receied is passed as the second parameter

The IP input routine is aAX software interrupt leel routine, and so is not called withyaparame-
ters. Itinstead communicates with netik interiaces through a queugintrg, which is identical in struc-
ture to the queues used by the retwinteriaces for storing paeks avaiting transmission.The softvare
interrupt is enabled by the naivk interfaces when theplace input data on the input queue.

8.3. pr_ctlinput

This routine is used to ceey “control” information to a protocol module (i.e. information which
might be passed to the uslut is not data).

The common calling caention for this routine is,

(void) (*protosw(].pr_ctlinput)(req, addr);
int req; struct sockaddr *addr;

Thereq parameter is one of the follang,

#define PRC_IFD@/N 0 /* interface transition */
#define PRC_RUTEDEAD 1 /* select n&v route if possible */
#define PRC_QENCH 4 /* some said to sle down */
#define PRC_MSGSIZE 5 * message size forced drop */
#define PRC_HOSTDEAD 6 ¥ normally from IMP */
#define PRC_HOSTUNRE2H 7 [* ditto */
#define PRC_UNREBH_NET 8 /* no route to netwrk */

9

#define PRC_UNREBH_ HOST /* no route to host */

#define PRC_UNREBH_PROTOCOL 10 /* dst says bad protocol */
#define PRC_UNREBH_POR 11 *bad port # */

#define PRC_UNREBH NEEDFRAG 12 f*1P_DF caused drop */
#define PRC_UNREBH_SRCRIL 13 /* source routediled */
#define PRC_REDIRECT_NET 14 /* net routing redirect */
#define PRC_REDIRECT_HOST 15 /* host routing redirect */

#define PRC_REDIRECT OSNET 14 /* redirect for type of service & net */
#define PRC_REDIRECT OSHOST 15 /* redirect for tos & host */

#define PRC_TIMXCEED_INTRANS 18 [* paclet lifetime epired in transit */
#define PRC_TIMXCEED_REASS 19 [* lifetime expired on reass q */
#define PRC_RRAMPROB 20 /* header incorrect */

SMM:18-18 Netvorking Implementation Notes

while theaddr parameter is the address to which the condition apphtsy of the requests ka dovi-

ously been deved from ICMP (the Internet Control Message Protocol [Postel81c]), and from error mes-
sages defined in the 1822 host/IMP\antion [BBN78]. Mapping tablesxst to cowert control requests

to UNIX error codes which are dedred to a user

8.4. pr_ctloutput

This is the routine that implements sarclet options at the protocolvd for getsodopt and set-
sokopt. The calling cowmention is,

error = (*protosw[].pr_ctloutput)(op, soMd, optname, mp);
int op; struct soodt *so; int level, optname; struct mif **mp;

whereop is one of PRCO_SEJIPT or PRCO_GEODPT, sois the sockt from whence the call originated,
and level and optnameare the protocol iel and option name supplied by the usdte results of a
PRCO_GEDPT call are returned in an mfbwhose address is placed imp before return.On a
PRCO_SEDPT call,mp contains the address of an wmhlzontaining the option data; the aitshould be
freed before return.

9. Protocol/networ k-interface interface

The lovest layer in the set of protocols which comprise a prot@eolly must interce itself to one
or more netwrk interfaces in order to transmit and reeepackets. Itis assumed that gmrouting deci-
sions hae been made before handing a peicto a netwrk interface, in &ct this is absolutely necessary in
order to locate gninterface at all (unless, of course, one uses a sifigdedwired’ interface). Therare
two cases with which to be concerned, transmission of agpacid receipt of a paek each will be consid-
ered separately

9.1. Packet transmission

Assuming a protocol has a handle on an iatsfifp, a (truct ifnet*), it transmits a fully formatted
paclet with the follaving call,

error = (*ifp->if_output)(ifp, m, dst)
int error; struct ifnet *ifp; struct mif *m; struct sockaddr *dst;

The output routine for the nebrk interface transmits the paekm to thedstaddress, or returns an error
indication (a UNIX error number)In reality transmission may not be immediate or successful; normally
the output routine simply queues the petchin its send queue and primes an interrupeanoutine to
actually transmit the paek For unreliable media, such as the Etherristiccessful’transmission simply
means that the paekhas been placed on the cable without a collis®n.the other hand, an 1822 inter
face guarantees proper detiy or an error indication for each message transmitfége model emplged

in the netvarking system attaches no promises ofvégli to the packts handed to a netrk interface, and
thus corresponds more closely to the Etherfetors returned by the output routine are only those that can
be detected immediatelgnd are normally tvial in nature (no bffer space, address format not handled,
etc.). Noindication is recefed if errors are detected after the call has returned.

9.2. Packet reception

Each protocol dmily must hae ane or more ‘lowest level’’ protocols. Theserotocols deal with
internetwork addressing and are responsible for thevelgliof incoming packts to the proper protocol pro-
cessing modulesin the PUP model [Boggs78] these protocols are termed [eprotocols, in the 1SO
model, netwrk layer protocols.In this system each such protocol module has an inputepagleue
assigned to itlncoming packts receied by a network interface are queued for the protocol module, and a
VA X software interrupt is posted to initiate processing.

Three macros arevdlable for queuing and dequeuing patk

IF_ENQUEUE(ifq, m)
This places the paekm at the tail of the queué.

Networking Implementation Notes SMM:18-19

IF_DEQUEUE(ifq, m)
This places a pointer to the patlat the head of queufe in m and remwes the packt from the
queue. Azero \alue will be returned imif the queue is empty

IF_DEQUEUEIF(ifq, m, ifp)
Like IF_DEQUJEUE, this remwes the net paclet from the head of a queue and returns minA
pointer to the inteeice on which the paekwas receied is gaced inifp, a (struct ifnet *).

IF_PREPEND(ifg, m)
This places the paekm at the head of the queiifq.

Each queue has a maximum length associated with it as a simple form of congestion Tbetrol.
macro IF_QFULL(ifq) returns 1 if the queue is filled, in which case the macro IBPRR)) should be
used to increment the count of the number of ptckropped, and thefehding packt is dropped.For
example, the follaving code fragment is commonly found in a netkinteraces input routine,

if (IF_QFULL(inq)) {
IF_DROP(inq);
m_freem(m);

} else
IF_ENQUEUE(ing, m);

10. Gateways and routing issues

The system has been designed with tkgeetation that it will be used in an internetl erviron-
ment. The* canonical’ environment vas erisioned to be a collection of local area netis connected at
one or more points through hosts with multiple retwinterfaces (one on each local area reky, and
possibly a connection to a long haul netkv(for ekample, the ARRNET). Insuch an evironment, issues
of gatavaying and pac&t routing becomeery important. Certain of these issues, such as congestion con-
trol, have keen handled in a simplistic manner or specifically not addredssttad, where possible, the
network system attempts to pride simple mechanisms upon which moneolned policies may be imple-
mented. Assome of these problems become better understood, the soluti@spdd will be incorpo-
rated into the system.

This section will describe thadilities pravided for packt routing. The simplistic mechanisms pro-
vided for congestion control are described in chapter 12.

10.1. Routing tables

The netvork system maintains a set of routing tables for selecting arietaterface to use in def
ering a packt to its destinationThese tables are of the form:

struct rtentry {

u_long rt_hash; /* hash ley for lookups */

struct sockaddrt dst; /*destination net or host */

struct sockaddrt_gatevay; /* forwarding agent */

short rt_flags; /* see belav */

short rt_refcnt; /* no. of references to structure */
u_long rt_use; [* packets sent using route */
struct ifnet*rt_ifp; /* interface to gie packet to */

h

The routing information is genized in twp separate tables, one for routes to a host and one for
routes to a netark. Thedistinction between hosts and netks is necessary so that a single mechanism
may be used for both broadcast and multi-drop type ar&sy and also for netwks huilt from point-to-
point links (e.g DECnet [DECB80]).

Each table is ganized as a hashed set of kuklists. Two 32-bit hash &lues are calculated by rou-
tines defined for each addressnily; one based on the destination being a host, and one assuming the tar
get is the netark portion of the address=ach hash alue is used to locate a hash chain to search (by

SMM:18-20 Netvorking Implementation Notes

taking the wlue modulo the hash table size) and the entire 32hievs then used as aykin scanning the
list of routes. Lookups are applied first to the routing table for hosts, then to the routing table forksetw
If both lookups &il, a final lookup is made for aildcard” route (by comention, netvork 0). The first
appropriate route diswered is used.By doing this, routes to a specific host on a ekwnay be present
as well as routes to the netk. Thisalso allavs a ‘fall back’ network route to be defined to @mart’
gateway which may then perform more intelligent routing.

Each routing table entry contains a destination (the desired final destinatiemdyaydgo which to
send the paak, and arious flags which indicate the rogetatus and type (host or neirvk). A count of
the number of paets sent using the route isfk, along with a count of'eld referencesto the dynami-
cally allocated structure to insure that memory reclamation occurs only when the route is not in use.
Finally, a pinter to the a netark interface is lept; packts sent using the route should be handed to this
interface.

Routes are typed in twvays: either as host or nedrk, and as'direct” or “indirect”. The host/net-
work distinction determines Roto compare thet_dstfield during lookup.If the route is to a netwvk,
only a packt’s destination netwrk is compared to the_dstentry stored in the tabldf the route is to a
host, the addresses must match bit for bit.

The distinction betweendirect” and “indirect” routes indicates whether the destination is directly
connected to the sourc&his is needed when performing local netiwencapsulationlf a paclet is des-
tined for a peer at a host or netk which is not directly connected to the source, the inteorktpaclet
header will contain the address of tivergual destination, while the local neivk header will address the
intervening gitavay. Should the destination be directly connected, these addressesefyddibe identi-
cal, or a mapping between theotexists. TheRTF_GATEWAY flag indicates that the route is to &ndi-
rect” gatavay agent, and that the local natvk header should be filled in from the gatevayfield instead
of from the final interneterk destination address.

It is assumed that multiple routes to the same destination will not be present; only one of multiple
routes, that most recently installed, will be used.

Routing redirect control messages are used to dynamically modsfyng routing table entries as
well as dynamically create werouting table entriesOn hosts wherexdiaustve routing information is too
expensve o maintain (e.g. wrk stations), the combination of wildcard routing entries and routing redirect
messages can be used tove a simple routing management scheme without the use of a higéer le
policy process. Currentonnections may be rerouted after notification of the protocols by means of their
pr_ctlinputentries. Statisticare lept by the routing table routines on the use of routing redirect messages
and their dict on the routing tablesThese statistics may be vied usingnetstal).

Status information other than routing redirect control messages may be used in theduatrpréds>
sent thg are ignored. Likewise, more intelligent'metrics” may be used to describe routes in the future,
possibly based on bandwidth and monetary costs.

10.2. Routingtableinterface

A protocol accesses the routing tables through three routines, one to allocate a route, one to free a
route, and one to process a routing redirect control mes3&geroutinertalloc performs route allocation;
it is called with a pointer to the folldng structure containing the desired destination:

struct route {
struct rtentry*ro_rt;
struct sockaddro_dst;
¥
The route returned is assumeéldeld” by the caller until released with atfree call. Protocolswhich
implement virtual circuits, such as Ta#ld onto routes for the duration of the circsiifetime, while
connection-less protocols, such as UDRWBocate and free routes whese their destination address
changes.

The routinertredirectis called to process a routing redirect control messHge called with a desti-
nation address, the wegatevay to that destination, and the source of the redir&sdirects are accepted

Networking Implementation Notes SMM:18-21

only from the current router for the destinatidha non-wildcard routeasts to the destination, theig-
way entry in the route is modified to point at theangatavay supplied. Otherwisea rew routing table
entry is inserted reflecting the information suppli®butes to integces and routes t@tpvays which are
not directly accessible from the host are ignored.

10.3. User leve routing policies

Routing policies implemented in user processes manipulateetinelkrouting tables through ow
ioctl calls. Thecommands SIOCADDRand SIOCDELR' add and delete routing entries, respegtyi; the
tables are read through the vllenem deice. Thedecision to place polcdecisions in a user process
implies that routing table updates may lag a bit behind the identificationnofauges, or thedilure of
existing routes, bt this period of instability is normallyevy small with proper implementation of the rout-
ing process.Advisory information, such as ICMP error messages and IMP diagnostic messages, may be
read from rav sockets (described in the xiesection).

Several routing poliy processes ha dready been implemented:he system standartlduting dae-
mon” uses a &riant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up-to-date rout-
ing tables in our local éironment. Interactiomwith other &isting routing protocols, such as the Internet
EGP (Exterior Gatgay Protocol), has been accomplished using a similar process.

11. Raw sockets

A raw ocket is an object which alNes users direct access to aéor-level protocol. Rav sockets are
intended for knaledgeable processes which wish toetaiivantage of some protocol feature not directly
accessible through the normal ingaxé, or for the deslopment of ne protocols lilt atop eisting lower
level protocols. Br example, a ne version of TCP might be aieloped at the uservel by utilizing a raw
IP soclet for delvery of paclets. Theraw IP cket interbice attempts to pvade an identical intedice to
the one a protocol euld have if it were resident in thegknel.

The rav socket support is bilt around a generic vasocket interfice, (possibly) augmented by proto-
col-specific processing routine$his section will describe the core of thevrsocket intertice.

11.1. Control blocks
Every rav socket has a protocol control block of the fellmg form:

struct raveb {
struct ravch *rcb_next; /* doubly linked list */
struct ravcb *rcb_pre;
struct sockt *rcb_sockt; /* back pointer to so&k */
struct sockaddrcb_faddr; /*destination address */
struct sockaddrcb_laddr; /*soclet’s address */
struct sockprotocb_proto; /*protocol fimily, protocol */

caddr_t rcb_pcb; /* protocol specific stdf</
struct minf *rch_options; /* protocol specific options */
struct routecb_route; [*routing information */

short rcb_flags;

h
All the control blocks are épt on a doubly linkd list for performing lookups during pastkdispatch.
Associations may be recorded in the control block and used by the output routine in prepaets fpack
transmission. Thecb_proto structure contains the protocanfily and protocol number with which the
raw socket is associatedThe protocol, &mily and addresses are used to filter peckn input; this will be
described in more detail shortlyf any protocol-specific information is required, it may be attached to the
control block using thecb_pcbfield. Protocol-specifioptions for transmission in outgoing patk may
be stored incb_options

A raw cket interface is datagram orientedhat is, each send or reeeian the sockt requires a
destination addressThis address may be supplied by the user or stored in the control block and automati-
cally installed in the outgoing paekby the output routineSince it is not possible to determine whether an

SMM:18-22 Netvorking Implementation Notes

address is present or not in the control blocky flags, RAV_LADDR and RAV_FADDR, indicate if a
local and foreign address are presdRubuting is &pected to be performed by the underlying protocol if
necessary

11.2. Input processing

Input paclets are‘assigned’'to raw ckets based on a simple pattern matching schdfaeh net-
work interface or protocol ges unassigned paeits to the ra input routine with the call:

raw_input(m, proto, src, dst)
struct mhuf *m; struct sockproto *proto, struct sockaddr *src, *dst;

The data packt then has a generic header prepended to it of the form

struct rav_header {

struct sockprotoaw_proto;
struct sockaddraw_dst;
struct sockaddraw_src;

¥
and it is placed in a paekqueue for theraw input protocol’module. Rclets talen from this queue are
copied into ayp raw ckets that match the header according to thevatig rules,

1) Theprotocol imily of the sockt and header agree.
2) If the protocol number in the saakis non-zero, then it agrees with that found in the gtdoéader

3) If alocal address is defined for the seigkhe address format of the local address is the same as the
destination addressand the tvo addresses agree bit for bit.

4) Therules of 3) are applied to the setk foreign address and the patk ource address.

A basic assumption is that addresses present in the control block aed lpe@tier (as constructed by the
network interiace and anraw input protocol module) are in a canonical form which mayleck com-
pared'.

11.3. Output processing

On output the na pr_usrreqroutine passes the patkand a pointer to thewacontrol block to the
raw protocol output routine for anprocessing required before it is detied to the appropriate netwk
interface. Theoutput routine is normally the only code required to implementvessaket interice.

12. Buffering and congestion control

One of the majordctors in the performance of a protocol is théfdsing polioy used. Lackof a
proper luffering polioy can force packts to be dropped, causdsified windaving information to be emit-
ted by protocols, fragment host mematggade the weerall host performance, et®ue to problems such
as these, most systems allocate edigool of memory to the netrking system and impose a pgliopti-
mized for ‘normal” network operation.

The netvorking system desloped for UNIX is little diferent in this respectAt boot time a fied
amount of memory is allocated by the netking system.At later times more system memory may be
requested as the need arises,di no time is memoryver returned to the systenit is possible to grbage
collect memory from the netwk, kut difficult. In order to perform thisarbage collection propeflgome
portion of the netark will have © be “turned of’’ as data structures are updatetihe intenal over which
this occurs mustépt small compared to theesage intetpaclet arrival time, or too much tréit may be
lost, impacting other hosts on the netly as well as increasing load on the interconnecting medilms.
our ervironment we hee rot experienced a need for such compaction, and thues le& the problem unre-
solved.

The mhuf structure vas introduced in chapter 3n this section a brief description will bevgn of
the allocation mechanisms, and policies used by the protocols in performing connegetibaflering.

Networking Implementation Notes SMM:18-23

12.1. Memory management

The basic memory allocation routines manage \&tgripage map, the size of which determines the
maximum amount of memory that may be allocated by theankitwA small amount of memory is allo-
cated at boot time to initialize the oftand mluf page cluster free listdhen the free lists areeausted,
more memory is requested from the system memory allocator if space remains in tHémeapory can-
not be allocated, callers may blocwaiting free memoryor the failure may be reflected to the caller
immediately The allocator will not blocksaiting free map entries, ever, as exhaustion of the page
map usually indicates thatiffers hae been lost due to déak” T he private page table is used by the net-
work buffer management routines in remapping pages to be logically contiguous as the needrarises.
addition, an array of reference counts parallels the page table and is used when multiple references to a
page are present.

Mbufs are 128 byte structures, 8 fitting in a 1Kbyte page of memihen data is placed in nfs,
it is copied or remapped into logically contiguous pages of memory from therkgiage pool if possible.
Data smaller than half of the size of a page is copied into one or more 112 hyi@databareas.

12.2. Protocol buffering policies

Protocols resee fixed anounts of lbiffering for send and recsd queues at so@t creation time.
These amounts define the high ana l@ater marks used by the setkoutines in deciding when to block
and unblock a processThe reseration of space does not currently result iy aotion by the memory
management routines.

Protocols which pradde connection el flow control do this based on the amount of space in the
associated soek queues.That is, send windes are calculated based on the amount of free space in the
soclet’s receve queue, while recge windows are adjusted based on the amount of dasitiag transmis-
sion in the send queu€are has been tak to &oid the ‘silly window syndrome” described in [Clark82]
at both the sending and redeg ends.

12.3. Queuelimiting

Incoming packts from the netark are alvays receved unless memory allocatiorails. Havever,
each Leel 1 protocol input queue has an upper bound on the gsidergjth, and anpackets eceeding
that bound are discardedt is possible for a host to bev@whelmed by rcessve retwork trafic (for
instance a host acting as atevay from a high bandwidth netwk to a lav bandwidth netwrk). Asa
“ defensve” mechanism the queue limits may be adjusted to throttleanktikafic load on a hostCon-
sider a host willing to dete some percentage of its machine to handling orétivafic. If the cost of han-
dling an incoming pacak can be calculated so that an acceptgideket handling ratécan be determined,
then input queue lengths may be dynamically adjusted based onsarkbstrk load and the number of
paclets avaiting processing.Obviously, discarding packts is not a satiattory solution to a problem such
as this (simply dropping paets is lilely to increase the load on a netl); the queue lengths were incor
porated mainly as a safi@eard mechanism.

12.4. Packet forwarding

When packts can not be forarded because of memory limitations, the system attempts to generate a
“source quenchimessage. laddition, ay other problems encountered during petclorwarding are also
reflected back to the sender in the form of ICMP p&xk Thishelps hostswid unneeded retransmissions.

Broadcast paaks are neer forwarded due to possible dire consequendesan early stage of net-
work development, broadcast paets were fonarded and arouting loop’ resulted in netark saturation
and &ery host on the netark crashing.

SMM:18-24 Netvorking Implementation Notes

13. Out of band data

Out of band data is adility peculiar to the stream sakabstraction definedLittle agreement
appears toxast as to what its semantics should Be&CP defines the notion ofurgent datd’as in-line,
while the NBS protocols [Burruss81] and numerous otherdgea fully independent logical transmission
channel along which out of band data is to be sknaddition, the amount of the data which may be sent
as an out of band messageigs from protocol to protocolyerything from 1 bit to 16 bytes or more.

A stream sockt’'s motion of out of band data has been defined as thesloreasonable common
denominator (at least reasonable in our minds); clearly this is subject to dé€hdtaf band data is
expected to be transmitted out of the normal sequencing amddlatrol constraints of the data strea.
minimum of 1 byte of out of band data and one outstanding out of band messageeatedeto be sup-
ported by the protocol supporting a stream sackiis a protocob prerogative o support lagersized mes-
sages, or more than one outstanding out of band message at a time.

Out of band data is maintained by the protocol and is usually not stored in thésseclkeie queue.
A socket-level option, SO_OOBINLINE, is praded to force out-of-band data to be placed in the normal
receve queue when gent data is recegd; this sometimes amelioriates problems due to loss of data when
multiple out-of-band ggments are reced before the first has been passed to the .usHre
PRU_SENDOOB and PB_RCVOOB requests to thgr_usrregroutine are used in sending and recej
data.

14. Trailer protocols

Core to core copies can bepensve. Consequentlya geat deal of ébrt was spent in minimizing
such operationsThe \AX architecture preides virtual memory hardave oganized in page unitsTo cut
down on copy operations, data isépt in page-sized units on page-aligned boundaries wérepassible.
This allovs data to be med in memory simply by remapping the page instead ofyjc@p Thembuf and
network interface routines perform page table manipulations where needed, hiding thexitiespdé the
VA X virtual memory hardare from higher hegl code.

Data enters the system indways: from the usepor from the netwrk (hardvare interbce). When
data is copied from the usgiddress space into the system it is deposited in pagesfigiexnf data is pre-
sent). Thisencourages the user to transmit information in messages which are a multiple of the system
page size.

Unfortunately performing a similar operation when taking data from the adkvis \ery difficult.
Consider the format of an incoming patk A paclet usually contains a local naivk header follwed by
one or more headers used by the highl lprotocols. Finallythe data, if ap follows these headersince
the header information may banable length, DMAng the eventual data for the user into a page aligned
area of memory is impossible withaaitpriori knowledge of the format (e.g., by supporting only a single
protocol header format).

To dlow variable length header information to be present and still ensure page alignment of data, a
special local netark encapsulation may be usethis encapsulation, termedrailer protocol [Leffler84],
places the ariable length header information after the datafixed dze local netwrk header is then
prepended to the resultant patk Thelocal network header contains the size of the data portion (in units
of 512 bytes), and a wetrailer protocol headerinserted before theaviable length information, contains
the size of the ariable length header informatiofhe folloning trailer protocol header is used to store
information rgarding the \ariable length protocol header:

struct {
short protocol; /* original protocol no. */
short length; /* length of trailer */

h

The processing of the trailer protocol isry simple. On output, the local netwk header indicates
that a trailer encapsulation is being usdthe header also includes an indication of the number of data
pages present before the trailer protocol headlae trailer protocol header is initialized to contain the
actual protocol identifier and thenable length header size, and is appended to the data along with the

Networking Implementation Notes

SMM:18-25

variable length header information.

On input, the intedce routines identify the trailer encapsulation by the protocol type stored in the

local network headerthen calculate the number of pages of data to find thmiiag of the trailer The
trailing information is copied into a separateuhand linked to the front of the resultant patk

Clearly, trailer protocols require cooperation between source and destin&tiaddition, thg are
normally cost dective anly when sizable paélts are usedThe current schemeosks because the local
network encapsulation header is agfiksize, allowing DMA operations to be performed at a wmoffset
from the first data page being reeel. Shouldthe local netwrk header beariable length this scheme

fails.

Statistics collected indicate that as much as 200Kb/s caaibedgby using a trailer protocol with
1Kbyte packts. Theaveaage size of theariable length headeras 40 bytes (the size of a minimal TCP/IP
paclet header).If hardware supports lger sized paais, &en greater @ins may be realized.

Acknowledgements

The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79], while in

certain places the Internet protocalrfily has had a great deal of influence in the desigre use of soft-
ware interrupts for processviacation is based on similaadilities found in the VMS operating system.
Mary of the ideas related to protocol modulgritfemory management, and nerk interfaces are based
on Rob Gurwitzs TCP/IP implementation for the 4.1BSBrgion of UNIX on the XX [Gurwitz81]. Greg
Chessonplained his use of trailer encapsulations in Datakit, instig their use in our system.

References

[Boggs79]
[BBN78]
[Cerf78]
[Clark82]
[DEC80]
[Gurwitz81]

[1S081]

[Joy86]

[Leffler84]
[Postel80]

[Postel81a]

BoggsD. R., J. FShoch, E. A. &ft, and R. M. MetcalfePUP: An Internetwork
Architecture. Report CSL-79-10.XEROX Palo Alto Research Centeluly 1979.

Bolt Beranek and Neman; Specification for the Interconnection of Host and.IMP
BBN Technical Report 1822May 1978.

Cerf,V. G.; The Catenet Model for Internetwking. InternetWorking Group,
IEN 48. July 1978.

Clark,D. D.; Windov and Acknavledgement Stragy in TCR RFC-813. Net-
work Information CenterSRI International. July 1982.

Digital Equipment CorporationDECnet DIGITAL Network Achitecture — Gen-
eral Description Order No. AA-K179A-TK. October1980.

Gurwitz, R. E; VAX-UNIX Networking Support Project — Implementation
Description. Internetark Working Group, IEN 168.January 1981.
InternationaDrganization for StandardizationSO Open Systems Intennection
- Basic Refegnce Model ISO/TC 97/SC 16 N 719August 1981.

Jo, W.; Fabry R.; Leffler, S.; McKusick, M.; and Karels, M.; Bedtey Software
Architecture Manual, 4.4BSD EditiorlNIX Programmers Sipplementary Doc-
uments Vol. 1 (PSD:5). Computer Systems Research Group,vensity of Cali-
fornia, Berleley. May, 1986.

Lefler, SJ. and Karels, M.J.;r&iler Encapsulations, RFC-893etwork Infor-
mation CenterSRI International. April 1984.

Postel). UserDatagram Protocol, RFC-768etwork Information CenterSRI
International. Mayl1980.

Postel)., ed. Internet Protocol, RFC-791Network Information CenterSRI
International. Septembé@®81.

SMM:18-26

[Postel81b]
[Postel81c]
[Xerox81]

[Zimmermann80]

Netvorking Implementation Notes

Postel)., ed. Transmission Control Protocol, RFC-798letwork Information
Center SRI International. September 1981.

Postel). InternetControl Message Protocol, RFC-79Rletwork Information
Center SRI International. September 1981.

Xerox Corporation. Internet Tansport Pptocols Xerox System Inggration
Standard 028112December 1981.

Zimmermanrhl. OSI Reference Model — The ISO Model of Architecture for
Open Systems InterconnectionlEEE Transactions on Communicatians
Com-28(4); 425-432 April 1980.

