The 4.4BSD NFS Implementation

Rick Macklem
University of Guelph

ABSTRACT

The 4.4BSD implementation of the Netxk File System (NFS)is intended to interoperate with
other NFS ¥rsion 2 Protocol (RFC1094) implementations &so allevs use of an alternate protocol that
is hoped to prade better performance in certainvennments. Thigpaper will informally discuss these
various protocol features and their uSéhere is a briefwerview of the implementation follwed by seeral
sections onarious problem areas related to NFS and some hintsvotohdeal with them.

Not Quite NFS (NQNFS) is an NFS dikpotocol designed to maintain full cache consisgenc
between clients in a crash tolerant manhés an adaptation of the NFS protocol such that the sesup-
ports both NFS and NQNFS clients while maintaining full consigtéetween the seer and NQNFS
clients. Itborravs heaily from work done on Spritely-NFS [Srivasan89], it uses Leases [Gray89] to
avad the need to recer server state information after a crash.

1. NFSImplementation

The 4.4BSD implementation of NFS and the alternate protocol nicknamed Not Quite NFS (NQNFS)
are lernel resident, Ut male wse of a fev system daemonsThe kernel implementation does not use an
RPC library handling the RPC request and reply messages directhhifi data areas. NFS intades to
the netvork using sockts via. the &rnel interbce aailable in sys/lern/uipc_syscalls.as sosend(), s@&-
ceive(),.. Thereare connection management routines for support ofes®¢ér connection oriented proto-
cols and timeout/retransmit support for datagram estscn the client sidef-or connection oriented trans-
port protocols, such as TCP/tRere is one connection for each client to eemount point that is main-
tained until an umountlf the connection breaks, the client will attempt a reconnect withnasoeket.
The client side can operate withoutyadaemons running,ut performance will be impxed by running
nfsiod daemons that perform read-aheads and write-behmidhe serer side to function, the daemons
portmap, mountd and nfsd must be runnifipe mountd daemon performsawnportant functions.

1) Uponstartup and after a hangup signal, mountd readsxipats file and pushes thgport informa-
tion for each local file system da into the lernel via. the mount system call.

2) Mountdhandles remote mount protocol (RFC1094, Appendix A) requests.

The nfsd master daemon forkd ohildren that enter theeknel via. the nfssvc system call. The children
normally remain krnel resident, prading a process contefor the NFS RPC seevs. The only xception

to this is when a Brberos [Steiner88] tiek is recered and at that time the nfsdigs the lernel temporar

ily to verify the ticlet via. the Kerberos libraries and then returns to teenkl with the results(This only
happens for Krberos mount points as described further under Segukityanwhile the master nfsd aits

to accept n& connections from clients using connection oriented transport protocols and passes the ne
soclets davn into the lernel. Theclient side mount_nfs along with portmap and mountd are the only parts
of the NFS subsystem that neadny use of the Sun RPC library

Network File System (NFS) is belied to be a egstered trademark of Sun Microsystems Inc.

SMM:06-2 The 4.4BSD NFS I mplementation

2. Mount Problems

There are seral problems that can be encountered at the time of an NFS mount, ranging from a
unresponsie NFS serer (crashed, netwk partitioned from client, etc.) toavious interoperability prob-
lems between diérent NFS implementations.

On the sergr side, if the 4.4BSD NFS servwill be handling an PC dients, mountd will require

the-n option to enable non-root mount request serviciRgnning of a pcnfsddaemon will also be neces-

sary The serer side requires that the daemons mountd and nfsd be running and yhag thgstered

with portmap properly If problems are encountered, the safest fix is to kill all the daemons and then restart
them in the order portmap, mountd and nf€&ther serer side problems are normally caused by problems
with the format of thexports file, which is ceered under Security and in theports man page.

On the client side, there arevermal mount options useful for dealing with senproblems.In cases
where a file system is not critical for system operation,-thenount option may be specified so that
mount_nfs will go into the background for a mount attempt on an unregpaasier. This is useful for
mounts specified ifstab(5) so that the system will not get hung while booting domngunt -a because a
file sener is not respongé. On the other hand, if the file system is critical to system operation, this option
should not be used so that the client willitnfor the serer to come up before completing bootstrapping.
There are also three mount options to help deal with interoperability issuesawihsvnon-BSD NFS
seners. The-P option specifies that the NFS client use a resei? port number to satisfy some szs/

security requirementSThe -c option stops the NFS client from doing@nnecion the UDP soait, so that

the mount wrks with serers that send NFS replies from port numbers other than the standarfi 2049.
Finally, the -g=num option sets the maximum size of the group list in the credentials passed to an NFS
sener in ezery RPC request. Although RFC1057 specifies a maximum size of 16 for the group list, some
seners cart handle that man If a user particularly root doing a mountgleps getting access denied from

a file serer, try temporarily reducing the number of groups that user is in to less than 5 by editing
letc/group. If the user can then access the file systemlyslicrease the number of groups for that user
until the limit is found and then gehe limit there with theg=numoption. Thisimplies that the sesar

will only see the firshumgroups that the user is in, which can cause some accessibility problems.

For sites that hae mary NFS serers, amd [Pendry93] is a useful administration tdbalso reduces
the number of actual NFS mount points,\aliéing problems with commands such as df(1) that hang when
ary of the NFS sersrs is unreachable.

3. Dealing with Hung Servers

There are seral mount options\aiilable to help a client deal with being hungiting for response

from a crashed or unreachabsener. By default, a hard mount will continue to try to contact the eerv

“ forever” to complete the system call. This type of mount is appropriate when processes on the client that
access files in the file system do not tolerate file I/O systems calls that return drmith-= EINTR

and/or access to the file system is critical for normal system operation.

There are tw other alternaties:

1) A soft mount {s option) retries an RP@ times and then the corresponding system call returns -1
with errno set to EINTR.For TCP transport, the actual RPC request is not retransmitiedhd
timeout interals waiting for a reply from the seev are done in the same manner as UDP for this
purpose. Theproblem with this type of mount is that most applications do rpe@ an EINTR

2 Penfsd is wailable in source form from Sun Microsystems and yraorymous ftp sites.

3Any security benefit of this is highly questionable and as such the BSBrsiges not require a client to use a resgort
number

“The Encore Multimax is kvan to require this.

Due to a netark partitioning or similar

The 4.4BSD NFS I mplementation SMM:06-3

error return from file 1/0 system calls (since iveeoccurs for a local file system) and get confused
by the error return from the I/O system callhe option-x=numis used to set the RPC retry limit
and if set too lw, the error returns will start occurring wheeethe NFS sersr is slav due to heay

load. Alternatelya large retry limit can result in a process hung for a long time, due to a crashed
sener or netvark partitioning.

2) Aninterruptible mount{ option) checks to see if a termination signal is pending for the process
when waiting for serer response and if it is, the 1/O system call posts an EINTR. Normally this
results in the process being terminated by the signal when returning from the systehhisdita-
ture allavs you to “C’’ out of processes that are hung due to unresporsivers. Theproblem
with this approach is that signals that are caught by a process are not recognized as termination sig-

nals and the process will remain hifng.

4. RPC Transport Issues

The NFS \érsion 2 protocol runsver UDP/IP transport by sending each Sun Remote Procedure Call
(RFC1057) request/reply message in a single UDP datagram. Since UDP does not guarantee datagram
delivery, the Remote Procedure Call (RPC) layer times out and retransmits an RPC request if no RPC reply
has been receid. Since this round trip timeout TR®) value is for the entire RPC operation, including RPC
message transmission to the serqueuing at the seer for an nfsd, performing the RPC and sending the
RPC reply message back to the client, it can be higilialvie for @en a noderately loaded NFS senv
As a result, the RO intenal must be a conseation (lage) estimate, in order tov@id extraneous RPC

request retransmitsAlso, with an 8Kbyte read/write data size (theaddt, the read/write reply/request

will be an 8+Kbyte UDP datagram that must normally be fragmented at the IP layer for transfrfssion.
IP fragments to be successfully reassembled into the IP datagram at the esdeall fragments must be
receved within a fairly short ‘time to live”. If one fragment is lost/damaged in transit, the entire RPC
must be retransmitted and redoriéis problem can bexaggerated by a nebsk interface on the recegr

that cannot handle the reception of back to backor&tpaclets. [Kent87a]

There are seral tuning mount options on the client side that caverseful when trying to allg-
ate performance problems related to UDP RPC transfdwt. options-r=num and -w=num specify the
maximum read or write data size respagyi. The sizenumshould be a peer of 2 (4K, 2K, 1K) and
adjusted denward from the maximum of 8Kbytes whese IP fragmentation is causing problems. The
best indicator of IP fragmentation problems is a significant numbé&aghents dopped after timeout
reported by thép: section of anetstat -s command on either the client or servOf course, if the frag-
ments are being dropped at the serit can be fun figuring out which client(s) arevéfved. Themost
likely candidates are clients that are not on the same local arealhasrthe seer or hae network inter
faces that do not recsd ®veaal back to back netwk paclets properly

By default, the 4.4BSD NFS client dynamically estimates the retransmit timeoutinterthe RPC
and this appears toork reasonably well for mgrenvironments. Hwever, the-d flag can be specified to
turn of the dynamic estimation of retransmit timeout, so that the client will use a static initial timeout
interval.® The -t=numoption can be used witld to set the initial timeout intea¥ to other than the dailt
of 2 seconds.The best indicator that dynamic estimation should be turnedvadld be a significant

SUnfortunately there are also some resource allocation situations in the BSi2lkvhere the termination signal will be ig-
nored and the process will not terminate.

At best, an gtraneous RPC request retransmit increases the load on tee aedvat \wrst can result in damaged files on the
sener when non-idempotent RPCs are redone [Juszczak89].

8 IP fragments for an Ethernet, which has an maximum transmission unit of 1500bytes.

°After the first retransmit timeout, the initial intahis baclked of exponentially

SMM:06-4 The 4.4BSD NFS I mplementation

numbet® in the X Repliesfield and a lage number in th&etriesfield in theRpc Info:section as reported
by thenfsstat command. Onhe serer, there would be significant numbers tfprog recent request cache
hits in theServer Cabe Statssection as reported by thésstat command, when run on the serv

The tradedfis that a smaller timeout inteal results in a bettervarage RPC response timeytb
increases the risk ok#raneous retries that in turn increase setgad and the possibility of damaged files
on the sergr. It is probably best to err on the safe side and usege l&f= 2sec) figd timeout if the
dynamic retransmit timeout estimation seems to be causing problems.

An alternatve o dl this fiddling is to run NFSwer TCP transport instead of UDBince the 4.4BSD
TCP implementation pxades reliable deliery with congestion control, itvaids all of the abee poblems.

It also permits the use of read and write data sizes greater than the 8Kbyte limit for UDP ttamnp®rt.

over TCP usually deliers comparable to significantly better performance than NESWDP unless the
client or serer processor runs at less than 5-10MIP@&. & slav processarthe tra CPU @erhead of

using TCP transport will become significant and TCP transport may only be useful when the clieetto serv
interconnect traerses congestedatpvays. Themain problem with using TCP transport is that it is only

supported between BSD clients and ses¥?

The 4.4BSD NFS I mplementation SMM:06-5

be «ported read-only For each host or group of hosts, the file system canxperted read-only or
read/write. Yu can also define one of three client user id toeserkedential mappings to help control
access. Roduser id == 0) can be mapped to somedkfcredentials while all other user ids are accepted

as gven. If the deéult credentials for user id equal zero are root, then there is essentially no remapping.
Most NFS file systems aremorted this vay, most commonly mapping user id == 0 to the credentials for
the user nobodySince the client user id and group id list is used unchanged on tlee ézpept for root),

this also implies that the user id and group id space must be common between the clienteanfleserv
user id N on the client must refer to the same user on therséil/user ids can be mapped to aaldf set

of credentials, typically that of the user nobotljis essentially gies world access to all users on the-cor
responding hosts.

There is also a non-standard BSHerb export option that requires the client pite a KerberoslV
rcmd service tickt to authenticate the user on the eerlf successful, the &rberos principal is load up
in the serer's passvord and group databases to get a set of credentials and a map of client userid to these
credentials is then cache@he use of TCP transport is strongly recommended, since the scheme depends
on the TCP connection tovext replay attempts.Unfortunately this option is only usable between BSD
clients and seers since it is not compatible with other mo“kerberized’ NFS systems.To enable use
of this Kerberos option, both mount_nfs on the client and nfsd on thersenrst be raklt with the
-DKERBEROS option and linkd to KerberoslV libraries.The file system is therkported to the client(s)
with the-kerb option in the gports file on the seer and the client mount specifies tieand-T options.
The -m=realm mount option may be used to specify arberos Realm for the tiek (it must be the &~
beros Realm of the samw) that is other than the cliemtiocal Realm. To access files in akerb mount
point, the user must ti@ a \alid TGT for the serer's Realm, as praded by Kinit or similar

As well as the standard NF&ngion 2 protocol (RFC1094) implementation, BSD systems can use a
variant of the protocol called Not Quite NFS (NQNFS) that supportriaty of protocol gtensions. This
protocol uses 64bit file tdfets and sizes, atcess rpcan appendoption on the write rpc andkended file
attributes to support 4.4BSD file system functionality more fullyalso males use of aariant of short
termleasegGray89] with delayed write client caching, in affioeff to provide full cache consistegiand
better performanceThis protocol is gailable between 4.4BSD systems only and is used whengthe
mount option is specifiedlt can be used with gnof the aforementioned options for NFS, such as TCP
transport {T) and KerberoslV authenticationK). Althoughthis protocol is perimental, it is recom-

mended wer NFS for mounts between 4.4BSD systéths.

7. Monitoring NFS Activity

The basic command for monitoring NFS wityi on clients and seers is nfsstat. It reports cumula-
tive gatistics of arious NFS actities, such as counts of tharious diferent RPCs and cache hit rates on
the client and seer. Of particular interest on the sewvare the fields in thBerver Cahe Statssection,
which gives rumbers for RPC retries rewed in the first three fields and total RPCs in the fourth. The first
three fields should remain ary small percentage of the total. If not, ibwid indicate one or more clients
doing retries too aggressly and the fix wuld be to isolate these clients, disable the dynami{@ &tima-
tion on them and maktheir initial timeout interal a conserative (e. laige) alue.

On the client side, the fields in tRpc Info:section are of particular interest, asytlgeve an overall
picture of NFS actity. The TimedOulffield is the number of 1/O system calls that returned -1'$oft"”
mounts and can be reduced by increasing the retry limit or changing the mount tiynge 'tor “‘hard”.
The Invalid field is a count of trashed RPC replies that are vedeind should remain zerS. The X
Repliesfield counts the number of repeated RPC repliesvettfiom the sergr and is a clear indication of
a o aggresse RTO estimate. Unfortunatelya good NFS sermr implementation will use drécent

% would appreciate email from pone who can prade NFS vs. NQNFS performance measurements, particutet\clients,
mary clients or wer an internetvork connection with a lge ‘bandwidth * RTT” product.

Some NFS implementations run with UDP checksums disabledybage RPC messages can be vedei

SMM:06-6 The 4.4BSD NFS I mplementation

request cachef Juszczak89] that will suppress thdraneous repliesA large \alue forRetriesindicates a
problem, lnt it could be ay of:

. atoo aggresse RTO estimate

. an overloaded NFS seer

. IP fragments being droppedatgway, dient or serer)

and requires further vestigation. TheRequestéield is the total count of RPCs done on all sesv

The netstat -s comes in useful during westigation of RPC transport problem3he fieldfragments
dropped after timeoun theip: section indicates IP fragments are being lost and a significant number of
these occurring indicates that the use of TCP transport or a smaller read/write data size is h sigder
nificant number obad dhedksumsreported in thaudp: section vould suggest netwrk problems of a more
generic sort.(cabling, transceer or network hardvare interbce problems or similar)

There is a RPC agity logging facility for both the client and sexw side in the &nel. Wherog-
ging is enabled by setting therkel \ariable nfsrtton to one, the logs in therkel structures nfsrtt (for the
client side) and nfsdrt (for the servside) are updated upon the completion of each RPC in a circular man-
ner The pos element of the structure is the indethe net element of the log array to be updatéd.
other words, elements of the log array frdog[pos] tolog[pos - 1] are in chronological ordefhe include

file <sys/nfsrtt.h> should be consulted for details on the fields in thtstructures®

8. Diskless Client Support

The NFS client does includetnel support for diskless/dataless operation where the root file system
and optionally the sap area is remote NFS mountedl diskless/dataless client is configured usingea v
sion of the "swapvmunix.c” file as preided in the directorycontrib/diskless.nfs|If the svap deice ==
NODEY, it specifies an NFS mounted aparea and should be configured the same size as set up by disk-
less_setup when run on the srvThis file must be put in theys/compile/<matne_name>kernel tuild
directory after the config command has been run, since config does motlkoat specifying NFS root
and svap areas.The kernel \ariable mountroot must be set to nfs_mountroot insteaf$ ahbuntroot and
the lernel structure nfs_diskless must be filled in propeflyere are some primie /stem administration
tools in thecontrib/diskless.nfdirectory to assist in filling in the nfs_diskless structure and in setting up an
NFS serer for diskless/dataless client$he tools were designed to pide a bare bones capability
allow maximum fleibility when setting up dferent serers.

The tools are as folles:

. diskless_odfiset.c - This little program reads ‘arhunix’’ object file and writes the file bytefeét of
the nfs_diskless structure in it to standard out.ds Bept separate because it sometimes has to be
compiled/linked in funty ways depending on the client architectu(8ee the comment at thegie-
ning of it.)

. diskless_setup.c - This program is run on theeseand sets up files for avgh dient. It mostly just
fills in an nfs_diskless structure and writes it out to either the "vmunix" file or a separate file called
Ivar/diskless/setup.<fifial-hostname>

. diskless_boot.c - There aredviunctions in here that may be used by a bootstragisench as tftpd
to permit sharing of théevmunix’ object file for similar clients. This ses dsk space on the boot-
strap sergr and simplify aganization, lut are not critical for correct operatioimhey read the'vmu-
nix” file, kut optionally fill in the nfs_diskless structure from a separate "setdigigbhostname>"
file so that there is only one gopf "vmunix" for all similar (same arch etc.) clientShese func-
tions use a t file called har/diskless/boot.<@itial-hostname> to control the netboot.

%Unfortunately a monitoring tool that uses these logs is still in the planning (dreaming) stage.

The 4.4BSD NFS I mplementation SMM:06-7

The basic setup steps are:

. make a 'vmunix" for the client(s) with mountroot() == nfs_mountroot() and sif6¢sw_de ==
NODEV if it is to do nfs swapping as well (See the sameagwmunix.c file)

. run diskless_d$et on the vmunix file to find out the bytdsaft of the nfs_diskless structure

. Run diskless_setup on the semto set up the sesv and fill in the nfs_diskless structure for that
client. Thenfs_diskless structure can either be written into the vmunix file (the -x optionjedrisa
Ivar/diskless/setup.<fifial-hostname>.

. Set up the bootstrap sew If the nfs_diskless structureas written into the‘'vmunix” file, ary
vanilla bootstrap protocol such as bootp/tftp can be used. If the bootstrap Isasvbeen modified to
use the functions in diskless_boot.c, then a file calladdiskless/boot.<fitial-hostname> must be
created. lis simply a tvo line text file, where the first line is the pathname of the corregtunix”
file and the second line has the pathname of the nfs_diskless structure file and itéseyia daf
For example:

/var/diskless/vmunix.pmax
/var/diskless/setup.rieks.cis.uoguelph.ca 642308

. Create a /ar subtree for each client in an appropriate place on thersanch as /ar/disk-
lesshar/<client-hostname>/... Bysing the <client-hostname> to feifentiate /ar for each host,
/etc/rc can be modified to mount the correar fvom the serer.

9. Not Quite NFS, Crash Tolerant Cache Consistency for NFS

Not Quite NFS (NQNFS) is an NFS dkprotocol designed to maintain full cache consisyenc
between clients in a crash tolerant manners an adaptation of the NFS protocol such that the sesup-
ports both NFS and NQNFS clients while maintaining full consigtéetween the seer and NQNFS
clients. Thissection borrvs heaily from work done on Spritely-NFS [Srivasan89], ot uses Leases
[Gray89] to @oid the need to reser server state information after a crashhe reader is strongly enceur
aged to read these references before trying to grasp the material presented here.

9.1. Overview

The protocol maintains cache consistebg using a somehat Sprite [Nelson88] li& protocol, hut
is based on short term leaSesstead of hard state information about open filEise basic principal is that

the protocol will disable client caching of a file whesrethat file is write sharédl Whenever a dient
wishes to cache data for a file it must holchbdviease.There are three types of leases: read caching, write
caching and non-cachinglhe latter type requires that all file operations be done synchronously with the
sener via. RPCs.A read caching lease als for client data caching,ubno file modifications may be
done. Awrite caching lease alies for client caching of writesub requires that all writes be pushed to the

sener when the leasecpires. Ifa dient has dirty bffers'® when a write cache lease has almaogired, it
will attempt to etend the leaseub is required to push the dirtyutfers if extension &ils. A client gets
leases by either doing@etL ease RPC or by piggybacking &etL ease Request onto another RPC. Piggy-
backing is supported for the frequent RPCs Getadtatty Lookup, Readlink, Read, Write and Readdir in
an efort to minimize the number dbetL ease RPCs required. Allleases are at the granularity of a file,
since all NFS RPCs operate on iridual files and NFS has no intrinsic notion of a file hienardbirecto-
ries, symbolic links and file attuibes may be read cachegt lare not write cachedl'he eception here is
the attrilute file_size, which is updated during cached writing on the client to reflecvigriie.

7 A lease is a tigkt permitting an aatity that is \alid until some epiry time.
18 \Write sharing occurs when at least one client is modifying a file while other client(s) are reading the file.
1% Cached write data is not yet pushed (written) to theeserv

SMM:06-8 The 4.4BSD NFS I mplementation

It is the serer’s responsibility to ensure that consistgig maintained among the NQNFS clients by
disabling client caching whewer a ®rver file operation wuld cause inconsistencie¥he possibility of
inconsistencies occurs whemea dient has a write caching lease ang ather client, or local operations
on the sersr, tries to access the file or when a modify operation is attempted on a file being read cached by
client(s). Atthis time, the semr sends amviction notice to all clients holding the lease and theaite for
lease terminationLease termination occurs whewacated the premises message has been reeeifrom
all the clients that hee sgned the lease or when the leagpiees via. timeout.The message padwiction
notice andvacated the premises roughly correspond to a Sprite serw client callback, bt are not imple-
mented as an actual RPC, tmid the serer waiting indefinitely for a reply from a dead client.

Sener consistencchecking can be viged as issuing intrinsic leases for a file operation for the dura-
tion of the operation onlyror example, theCreate RPC will get an intrinsic write lease on the directory in
which the file is being created, disabling client read caches for that directory

By relegating this responsibility to the sexy consisteng between the seer and NQNFS clients is
maintained when NFS clients are modifying the file system asell.

The leases are issued as time irdakxvo &oid the requirement of time of day clock synchronization.
There are three important time constantswkmdo the serer The maximum_lease term sets an upper
bound on lease duratiorlhe clock_skew is added to all lease terms on the seto correct for dfering
clock speeds between the client and eeandwrite_slack is the number of seconds the saris willing to
wait for a client with an gpired write caching lease to push dirty writes.

The serer maintains anodify_revision number for each file. It is defined as a unsigned qaediw
integer that is neer zero and that must increase whesrehe corresponding file is modified on the serv
It is used by the client to determine whether or not cached data for the file ixG#alerating thisalue is
easier said than done. The current implementation uses theifglltechnique, which is belied to be
adequate. Thhigh order longwrd is stored in the ufs inode and is initialized to one when an inode is first
allocated. Thdow order longvord is stored in main memory only and is initialized to zero when an inode
is read in from disk.When the file is modified for the first time within agi second of vall clock time,
the high order longard is incremented by one and thevlorder longvord reset to zeroFor subsequent
modifications within the same second dllxclock time, the lar order longvord is incremented. If thewo
order longverd wraps around to zero, the high order loaghhis incremented ain. Sincethe high order
longword only increments once per second and the inode is pushed to disk frequently during file modifica-
tion, this implies & CurrentDisk < 5. Whenthe inode is read in from disk, 10 is added to the high order
longword, which ensures that the quamhd is greater than suvalue it could hee had before a crashrhis
introduces apparent modificationgesy time the inodedills out of the LR inode cache, i this should
only reduce the client caching performance by a (hopefully) smadjimar

9.2. Crash Recovery and other Failure Scenarios

The serer must maintain the state of all the current leases held by clieimsnice thing about short
term leases is that maximum_lease_term seconds after tlee seps issuing leases, there are no current
leases left.As such, sermr crash reogery does not require grstate recoery. After rebooting, the seev
refuses to service grRPCs acept for writes until write_slack seconds after the last leamddnhare

expirec?. By then, the serr would not hae any autstanding leases to ra@ the state of and the clients
have had at least write_slack seconds to push dirty writes to thersamnd get the sezv syncd up to date.
After this, the serer simply services requests in a manner similar to NIRSan efort to minimize the
effect of "recwery storms" [Balkr91], the semr repliestry_again_later to the RPCs it is not yet ready to
service.

2 The NFS clients will continue to kEpproximatelyconsistent with the sex

21 The last leasexpiry time may be safely estimated as "boottime+maximum_lease_term+cleak fek machines that can-
not store it in novolatile RAM.

The 4.4BSD NFS I mplementation SMM:06-9

After a client crashes, the servmay hse © wait for a lease to timeout before servicing a request if
write sharing of a file with a cachable lease on the client is about ta destdor the client, it simply starts
up getting an leases it ' needs. Ay outstanding leases for that client on the semrior to the crash
will either be renered or a&pire via timeout.

Certain netwrk partitioning &ilures are more problematic. If a client to semetwork connection is
severed just before a write caching leasgiees, the client cannot push the dirty writes to theeseAfter
the leasexpires on the seanr, the serer permits other clients to access the file with the potential of getting
stale data. Unfortunately | belie this failure scenario is intrinsic in grdelay write caching scheme unless

the serer is required to wit forever for a client to rgan contact?. Since the write caching lease has
expired on the client, it will sync up with the senas soon as the nali« connection has been re-estab-
lished.

There is anotheraflure condition that can occur when the serig congestedThe worst case sce-
nario would have the client pushing dirty writes to the sentut a lage request queue on the sardelays
these writes for more thanrite slack seconds. It is hoped that a congestion control scheme using the
try_again_later RPC reply after booting combined with the feliog lease termination rule for write
caching leases can minimize the risk of this occurredceurite caching lease is only terminated on the
sener when there are t@ bkeen no writes to the file and the srhas not beernverloaded during the pre-
vious write_slack seconds. The smmhas not beenverloaded is approximated by a test for sleeping
nfsd(s) at the end of the write_slack period.

9.3. Server Disk Full

There is a serious unresety problem for delayed write caching with respect toesedisk space
allocation. Wherthe disk on the file seev is full, delayed write RPCs caailfdue to "out of space"For
NFS, this occurrence results in an error return from the close system call on the file, since the dirty blocks
are pushed on closé€rocesses writing important files can check for this error return to ensure that the file
was written successfully For NQNFS, the dirty blocks are not pushed on close and as such the client may
not attempt the write RPC until after the process has done the close which implies no error return from the
close. fer the current prototype, the only solution is to modify programs writing important file(s) to call
fsync and check for an error return from it instead of close.

9.4. Protocol Details
The protocol specification is identical to that of NFS [Sun&8gpt for the follaving changes.
. RPC Information

Program Number 300105
Version Number 1

. Readdir_and_Lookup RPC

struct readdirlookas {
fhandle file;
nfscookie cookie;
unsigned count;
unsigned duration;

h

struct entry {
unsigned cachable;
unsigned duration;

22 Gray and Cheritonvaid this problem by usingarite through policy.

SMM:06-10 The 4.4BSD NFS I mplementation

modifyrev rey,

fhandle entry_fh;
ngnfs_fttr entry_attrib;
unsigned fileid;
filename name;
nfscookie cookie;
entry *nextentry;

h

union readdirlookres switch (stat status) {
case NFS_OK:
struct {
entry *entries;
bool eof;
} readdirloolok;
default:
void;

h

readdirlookres
NQNFSPROC_READDIRLOOK((readdirlookays) = 18;

Reads entries in a directory in a manner analogous to the NIKGHREADDIR RPC in NFS, W
returns the file handle and attitbs of each entry as wellThis allovs the attribte and lookup
caches to be primed.

. Get Lease RPC

struct getleasegs {
fhandle file;
cachetype readwrite;
unsigned duration;

%
union getleaseres switch (stat status) {
case NFS_OK:
bool cachable;
unsigned duration;
modifyrev rey,
ngnfs_fttr attritutes;
default:
void;
h
getleaseres

NQNFSPROC_GETLEASE(getleasegs) = 19;

Gets a lease for “file"alid for "duration”" seconds from when the leasgs\issued on the ser’.
The lease permits client caching if "cachable" is tillee modify reision level and attritutes for the
file are also returned.

% To be safe, the client may only assume that the leasalid for “duration” seconds from when the RPC requesisvgent to
the serer.

The 4.4BSD NFS I mplementation SMM:06-11

. Eviction Message
void
NQNFSPROC_EVICTED (fhandle) = 21,
This message is sent from the szrto the client. When the client reees the message, it should

flush data associated with the file represented by "fhandle" from its caches and then gacat¢te
M essage back to the selr. Hushing includes pushing wulirty writes via. write RPCs.

. Vacated Message
void
NQNFSPROC_VACATED (fhandle) = 20;
This message is sent from the client to theeservresponse to tHeviction M essage. See abwoe.
. Access RPC

struct accessgs {
fhandle file;
bool read_access;
bool write_access;
bool exec_access;

3

stat
NQNFSPROC_ACCESS(accesszs) = 22;

The access RPC does permission checking on therderthe gien type of access required by the
client for the file. Use of this RPC\aids accessibility problems caused by client->semid map-

ping.
. Piggybacled Get Lease Request

The piggybackd get lease request is functionally egl@nt to the Get Lease RPQaoept that is
attached to one of the other NQNFS RPC requests aw$ollA getleaserequest is prepended to all of the
request ayuments for NQNFS and a getleaserequestres is inserted in all NFS result structures just after the
"stat" field only if "stat == NFS_OK".

union getleaserequest switch (cachetype type) {
case NQLREAD:
case NQWRITE:
unsigned duration;
default:
void;

3

union getleaserequestres switch (cachetype type) {
case NQLREAD:
case NQWRITE:
bool cachable;
unsigned duration;
modifyrev rey,
default:
void;
2
The get lease request applies to the file that the attached RPC operates on and thauféds egtrilin in
the same location as for the NFS RPC reply structure.

SMM:06-12 The 4.4BSD NFS I mplementation

. Three additional "stat"alues
Three additional alues hae been added to the enumerated type "stat".

NQNFS_EXPIRED=500
NONFS_TR'LATER=501
NOQNFS_AJTHERR=502

The "epired" value indicates that a lease hapieed. The'try later” value is returned by the sernwhen
it wishes the client to retry the RPC request after a short.delayused during crash reeery (Section 2)
and may also be useful for sencongestion controlThe "authetication error"alue is returned fordeber
ized mount points to indicate that there is no cached authentication mapping artbe& tickt for the
principal is required.

9.5. Data Types
. cachetype

enum cachetype {
NQLNONE = 0,
NQLREAD =1,
NQLWRITE =2

h

Type of lease requested. NQLNONE is used to indicate no piggsthdesse request.
. modifyrev
typedef unsignedyper modifyre;

The "modifyre/” is a unsigned quadwd integer \alue that is neer zero and increaseseay time the
corresponding file is modified on the sarv

. ngnfs_time
struct ngnfs_time {
unsigned seconds;
unsigned nano_seconds;
h
For NONFS times are handled at nano second resolution instead of micro second resolution for NFS.
. ngnfs_fattr

struct ngnfs_dttr {
ftype type;
unsigned mode;
unsigned nlink;
unsigned uid;
unsigned gid;
unsigned Wiper size;
unsigned blocksize;
unsigned rde
unsigned kiper bytes;
unsigned fsid;
unsigned fileid;
ngnfs_time atime;
ngnfs_time mtime;
ngnfs_time ctime;
unsigned flags;
unsigned generation;
modifyrev rey,

The 4.4BSD NFS I mplementation SMM:06-13

%
The ngnfs_dttr structure is modified from the NF&tF so that it stores the file size as a 64bit quan-

tity and the storage occupied as a 64bit number of bytes. It also has fields added for the 4.4BSD
va_flags and & gen fields as well as the fdetodify rev levd.

. ngnfs_sattr

struct ngnfs_sattr {
unsigned mode;
unsigned uid;
unsigned gid;
unsigned Wiper size;
ngnfs_time atime;
ngnfs_time mtime;
unsigned flags;
unsigned rde

h

The ngnfs_sattr structure is modified from the NFS sattr structure in the same maatter as f

The aguments to seral of the NFS RPCs kia bkeen modified as well. Mostlyhese are minor changes to
use 64bit file dets or similarThe modified agument structures fola

. Lookup RPC

struct lookup_diropays {
unsigned duration;
fhandle dir;
filename name;

k

union lookup_diropres switch (stat status) {
case NFS_OK:
struct {
union getleaserequestres lookup_lease;
fhandle file;
ngnfs_httr attritutes;
} lookup_diropok;
default:
void;

k

The additional "duration" gument tells the seev to get a lease for the name being &xbkip if it is
non-zero and the lease is specified in "lookup_lease".

. Read RPC

struct ngnfs_readgs {
fhandle file;
unsigned Wiper ofset;
unsigned count;

. Write RPC

struct ngnfs_write@s {
fhandle file;
unsigned Wiper ofset;

SMM:06-14 The 4.4BSD NFS I mplementation

bool append;
nfsdata data;
%
The "append" gument is true for apeend only write operations.
. Get Filesystem Attribtes RPC

union ngnfs_statfsres (stat status) {
case NFS_OK:
struct {
unsigned tsize;
unsigned bsize;
unsigned blocks;
unsigned bfree;
unsigned beail;
unsigned files;
unsigned files_free;
}info;
default:
void;
3
The “files" field is the number of files in the file system and the "“files_free" is the number of addi-
tional files that can be created.

10. Summary

The configuration and tuning of an NFS/ieanment tends to be a bit of a mystic artt hopefully
this paper along with the man pages and other reading will be helpful. Good Luck.

11. Bibliography

[Baker91] MaryBaker and John Ousterhoutyd@lability in the Sprite Distribted File System, In
Opeimating System Rgaw, (25)2, pg. 95-98, April 1991.

[Baker91la] MaryBaker, Private Email Communication, May 1991.

[Burrows88] MichaelBurrows, Eficient Data Sharing, échnical Report #153, Computer Labora-
tory, University of Cambridge, Dec. 1988.

[Gray89] CaryG. Gray and Dad R. Cheriton, Leases: An fiffient Fault-Tolerant Mechanism

for Distributed File Cache Consistgndn Proc. of the Wwelfth ACM Symposium on
Opemting Systems Principalkitchfield Rark, AZ, Dec. 1989.

[Howard88] JohnH. Howard, Michael L. KazarSherri G. Menees, Déd A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham and Michael dst\WScale and Performance in a
Distributed File SystemACM Trans. on Computer Systent6)1, pg 51-81, Fel1988.

[Juszczak89] Chetuszczak, Impnang the Performance and Correctness of an NFSegémProc.
Winter 1989 USENIX Confence pg. 53-63, San Dgo, CA, January 1989.

[Keith90] BruceE. Keith, Perspectes on NFS File Serer Performance Characterization, In
Proc. Summer 1990 USENIX Corfece pg. 267-277, Anaheim, CA, June 1990.

[Kent87] ChristopherA. Kent, Cache Coheence in Distrilnted Systemd$Research Report 87/4,

Digital Equipment Corporation ¥gtern Research LaboratoApril 1987.

[Kent87a] ChristopherA. Kent and Jdéfey C. Mogul, Fragmentation Consided Harmfu)
Research Report 87/3, Digital Equipment Corporaticestéfn Research Laboratpry
Dec. 1987.

The 4.4BSD NFS I mplementation SMM:06-15

[Macklem91]

[Nelson88]

[Nowicki89]

[Ousterhout90]

[Pendry93]

[Reid90]

[Sandbeg85]

[Schroeder85]

[Srinivasan89]

[Steiner88]

[Stern]
[Sun87]

[Sun88]

[Sun89]

RickMacklem, Lessons Learnedifing the 4.3BSD Reno Implementation of the NFS
Protocol, InProc. Winter USENIX Confemnce pg. 53-64, Dallas, TX, January 1991.

MichaelN. Nelson, Brent B. \Wch, and John K. Ousterhout, Caching in the Sprite
Network File System, ACM Transactions on Computer Systeif®1 pg. 134-154,
February 1988.

Bill Nowicki, Transport Issues in the Netvk File System, IrComputer Communica-
tion Review, pg. 16-20, l. 19, Number 2, April 1989.

Johik. Ousterhout, Wi Aren't Operating Systems Gettingagter As Bst as Hard-
ware? InProc. Summer 1990 USENIX Comfece pg. 247-256, Anaheim, CA, June
1990.

Jan-SimoRendry 4.4 BSD Automounter Reference Manual,die/ustsbin/amd/doc
directory of 4.4 BSD distriliion tape

JimReid, N(e)FS: the Protocol is the ProblemPhoc. Summer 1990 UKUUG Confer
ence London, England, July 1990.

RusseBandbey, David Goldbeg, Steve Kleiman, Dan Valsh, and Bob yon, Design
and Implementation of the Sun Netk filesystem, InProc. Summer 1985 USENIX
Confeence pages 119-130, Portland, OR, June 1985.

MichadD. SchroederDavid K. Gifford and Roger M. Needham, A Caching File Sys-
tem For A Programmes Workstation, InProc. of the &@nth ACM Symposium on Oper
ating Systems Principalpg. 25-34, Orcas Island, Ay Dec. 1985.

V Srinivasan and Jéky. C. Mogul, Spritely NFS: Implementation an@formance of
Cade-Consistency Btocols Research Report 89/5, Digital Equipment Corporation
Western Research LaboratpMay 1989.

Jennife6. SteinerClifford Neuman and Jeéy |. Schiller, Kerberos: An Authentica-
tion Service for Open Netwk Systems, IProc. Whter 1988 USENIX Confence
Dallas, TX, February 1988.

HalStern,Managing NFS and NISO'Reilly and Associates, ISBN 0-937175-75-7.

SunMicrosystems Inc.XDR: External Data Repsentation Standdy RFC1014, Net-
work Information CenterSRI International, June 1987.

SurMicrosystems Inc.RPC: Remote Picedue Call Protocol Specification@érsion 2
RFC1057, Netwrk Information CentetSRI International, June 1988.

SunMicrosystems Inc.NFS: Network He System Ratocol SpecificationARPANET
Working Group Requests for Comment, DDN Netiv Information CenterSRI Inter
national, Menlo Brk, CA, March 1989, RFC-1094.

