
LastWave 2.0 C-Language
Documentation

Emmanuel Bacry
CMAP, Ecole polytechnique, 91128 Palaiseau Cedex, France

email : lastwave@cmap.polytechnique.fr
web : http://www.cmap.polytechnique.fr/˜bacry/LastWave

This documentation includes description of

• LastWave Kernel 2.0, Author: E.Bacry

• Signal package 2.0, Authors: E.Bacry, N.Decoster and X.Surraud

• Image package 2.0, Authors: E.Bacry and J.Fraleu

3

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

Version 2, June 1991

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.
If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.
5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.
7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.
8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail

to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.
10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-

DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO

LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU

OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-

GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

Contents

1 For LastWave 1.xxx users 13

1.1 Some major changes . 13
1.1.1 About VALUE . 13

1.1.2 About commands . 13
1.1.3 About tSTR, tSTR and tWORD, tWORDLIST 14

1.1.4 Returning values . 14
1.1.5 If you wrote your own graphic object 14

1.2 Some minor changes . 14

2 Adding some new commands using C-language 15
2.1 Hello World . 15
2.2 Arguments - The ParseArgv function - The tTYPE’s 17

2.3 Optional arguments - The tTYPE ’s . 18
2.4 Basic tTYPE’s . 19

2.5 The Parse<type> and Parse<type> functions 19
2.6 Levels . 20

2.7 Managing Errors . 21
2.8 Returning a basic type value . 22

2.9 Command -options . 22
2.10 Basic memory allocation . 24

2.11 Allocation of strings and lists - Temporary pointers 24
2.12 Managing inputs/outputs - Streams . 25

2.12.1 Using C-functions dealing with the standard streams 25
2.12.2 Streams in LastWave . 26

2.12.3 Functions that deal with STREAM’s 26
2.12.4 Using FILE * . 27

2.13 Defining your own package . 27

3 VALUE’s in LastWave 29

3.1 Playing around with complex objects . 29
3.1.1 A simple example dealing with signals - Reference counters 29

3.1.2 Temporary signals . 32
3.1.3 A simple example dealing with listvs 33

3.2 About VALUE’s . 33
3.2.1 What is a VALUE? . 33

3.2.2 Returning a VALUE - The SetResultValue function 35

9

3.2.3 Reference counting of VALUEs - Temporary VALUEs 35

3.2.4 The tVAL and tVALOBJ tTYPE’s . 36

3.2.5 The GetTypeValue macro - Casting VALUE’s - Static string type . . . 37

3.2.6 C-macros dealing with VALUEs . 38

3.3 Managing &listv . 39

3.4 Managing &proc . 41

3.4.1 The GetResult... functions . 41

3.5 Managing &script . 42

3.6 Managing &signal . 42

3.6.1 The SIGNAL type and the corresponding tTY PE’s 42

3.6.2 Basic functions for dealing with SIGNAL’s 44

3.6.3 Mathematical functions on SIGNAL’s 45

3.6.4 i/o functions for SIGNAL’s . 47

3.7 Managing &range . 48

3.8 Managing &image . 49

3.8.1 The IMAGE type and the corresponding tTY PE’s 49

3.8.2 Functions for dealing with IMAGE’s 50

3.8.3 i/o functions for IMAGE’s . 51

3.9 About NUMVALUE . 51

3.10 About STRVALUE . 51

3.11 The null VALUE . 52

4 Defining new tTYPE’s, new &type’s and new VALUE’s 53

4.1 The main structures - the &type . 53

4.2 The TypeStruct definition . 54

4.3 Defining a package with a new VALUE and tTY PEs 55

4.3.1 The AddVariableType... functions 55

4.4 The &type and the documentation in the TypeStruct definition 56

4.5 The main functions of the TypeStruct . 57

4.5.1 The New function . 57

4.5.2 The Delete function . 57

4.5.3 The Clear function . 58

4.5.4 The Copy function . 58

4.5.5 The ToStr function . 59

4.5.6 The Print function . 59

4.5.7 The PrintInfo function . 59

4.6 The NumExtract function . 60

4.7 Managing fields : an introduction . 61

4.8 Managing fields (no extraction) . 61

4.9 Managing extraction (no field) . 63

4.9.1 The GetExtractOption function . 63

4.9.2 The ExtractInfo function - the ExtractInfo structure 64

4.9.3 The GetExtract function - The FSIList structure 65

4.9.4 The SetExtract function . 67

4.10 Managing extraction with field . 71

4.10.1 The GetExtractOption function . 71

11

4.10.2 The GetExtractInfo function . 71
4.10.3 The GetExtract functions . 72
4.10.4 The SetExtract functions . 73

4.11 The Get...Field and the Set...Field functions 75
4.11.1 The Get...Field functions . 75
4.11.2 The Set...Field functions . 75

4.12 Playing around with CIRCLES . 76

5 Managing graphics 79
5.1 Graphic objects . 79

5.1.1 The GOBJECT structure . 79
5.1.2 Parsing graphic objects: tGOBJECT, tGOBJECT , tGOBJECTLIST and

tGOBJECTLIST . 80
5.1.3 Functions that deal with local/global coordinates 80
5.1.4 Useful functions that deal with windows 81

5.2 Graphic classes . 81
5.2.1 The GCLASS structure . 81
5.2.2 The init function . 82
5.2.3 The deleteContent function . 82
5.2.4 The draw function . 82
5.2.5 The set function . 83
5.2.6 The msge function . 83
5.2.7 The isIn function . 84
5.2.8 Parsing graphic classes: tGCLASS and tGCLASS 84

5.3 Drawing! . 84
5.3.1 The pen . 84
5.3.2 The line style . 85
5.3.3 Managing colors and colormaps: tCOLOR, tCOLOR , tCOLORMAP and

tCOLORMAP . 85
5.3.4 The clipping rectangle . 86
5.3.5 The main drawing functions . 86
5.3.6 Drawing images . 87

5.4 Adding a new graphic class using the C-Language 87
5.4.1 The creation of the graphic class . 87
5.4.2 The init function . 88
5.4.3 The deleteContent function . 89
5.4.4 The draw function . 89
5.4.5 The set function . 90
5.4.6 The isIn function . 92

5.5 Managing disp related scripts for the new graphic class 93
5.5.1 disp windows . 93
5.5.2 Managing the zoom . 93
5.5.3 Managing the cursor . 93
5.5.4 Let’s play around with circles! . 95

12

Chapter 1

For LastWave 1.xxx users

As you already know, there are pretty big changes between the 1.xxx version and version
2.0 of LastWave. Here is a list of changes in the C-API. This is not an exhaustive list
but it should help you modifying quickly your 1.xxx C-files in order to include
them in LastWave 2.0

1.1 Some major changes

1.1.1 About VALUE

One of the main changes in 2.0 is that the variable content (formerly AVARCONTENT) corre-
sponds now to the VALUE type. The structure is very different. AVARCONTENT worked using
a message system whereas VALUE works using virtual functions.
If you wrote, in 1.xxx, your own AVARCONTENT, you will have to convert the whole structure
to a VALUE structure. You should read Section 4 to learn how to do it. The conversion will
take a little time. But it is the major change in 2.0. All the other changes will be very
easy and very fast to make.

1.1.2 About commands

• The type CCOMMAND has been replaced by the type CPROC

• The type SCOMMAND has been replaced by the type SPROC

• The type CCommandTable has been replaced by the type CProcTable and the type
CCOMMANDTABLE by the type CPROCTABLE. To add a table of commands you should use
now the void AddCProcTable(CProcTable *table) function instead of the former
AddCCommandTable function

• The help of a C-command has slightly changed syntax (it is now the same as for a
script procedure). In 1.xxx, the syntax was

"{{<action1 arg names>} {<action1 help>}} ...

{{<actionN arg names>} {<actionN help>}}"

now, it is

13

14 CHAPTER 1. FOR LASTWAVE 1.XXX USERS

"{{{<action1 arg names>} {<action1 help>}} ...

{{<actionN arg names>} {<actionN help>}}}"

i.e., the former syntax has been surrounded by {...}

1.1.3 About tSTR, tSTR and tWORD, tWORDLIST

• You have to be aware that the type tSTR now correponds to an evaluated string. If
you want to parse a non evaluated string you must use tWORD instead (same thing for
tLIST which must be replaced by tWORDLIST). This has to be done for instance if you
wrote some commands with actions. The action name must be now parsed using the
type tWORD and not tSTR as before.

• The former parsing type tWORD which corresponded to a word in the mp package now
corresponds to a non evaluated string.

1.1.4 Returning values

Be careful: when a command returns it must return a value whichcan be of any type. So
calling

SetResultStr("1");

is no longer equivalent to

SetResultInt(1);

To learn about all the SetResult... functions you should read Section 3.2.2

1.1.5 If you wrote your own graphic object

• If you wrote your own graphic object, you must change the set method (see Section
5.2.5). The only change is that now there is a field argument which corresponds
to the field (without the - at the beginning). In 1.xxx, the field corresponded to
argv[0].

1.2 Some minor changes

• Try to avoid manipulating directly the argv variables. Though it will still work, in a
forthcomoing version of LastWave, it will be forbidden. You should use the various
ParseArgv... or Parse<Type> functions and the ParseOption function (see Section
2.9) for parsing -option.

Chapter 2

Adding some new commands using
C-language

2.1 Hello World

Let us write a new C-command that just prints ”Hello World !” on the terminal window.
We will write it in a file named hello.c in the user directory. The directory user is meant
to contain all the files you write (unless you create a new package, in which case you should
read Section 2.13). The directory user/src should contain all the .c files and the directory
user/include should contain all the .h files. Initially the directory user/src contains only
one file which name is user.c. This file contains a single C-function called UserInit which
is called by LastWave at startup. This is where you will need to put the declarations of the
new commands or packages you write.
As we said, we will write the command in the file hello.c (you could write it directly in
the file user.c). Thus, the first thing to do is to create this file: create a new (empty file)
named hello.c in the directory user/src. Then you should declare it in the list of files of
the user: edit the file user/obj/FileList and change the line

OBJS = $(OBJDIR)user.$(OBJEXT)

into

OBJS = $(OBJDIR)user.$(OBJEXT) $(OBJDIR)hello.$(OBJEXT)

You are now ready to write the code for the command in the file hello.c

The command we will write will be called hello and will correspond to the C-function
C Hello that will be defined in the following way :

#include "lastwave.h"

C Hello(char **argv)

{
Printf("Hello World!\n");

}

15

16 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

All LastWave files should start by the include statement #include "lastwave.h". In
order to inherit of LastWave stream management (see Section 2.12), you should never use
the input/output standard C-functions printf, scanf, fprintf... but only the one
defined in LastWave whose names are the same as the names of the C-functions except that
their first letter is a capital letter (e.g., Printf, Scanf, FPrintf,. . .).

All C-functions that are associated to LastWave commands must be declared as functions
of one variable of type char **. This variable corresponds to the list of arguments the
command is called with.

We must now declare to the LastWave interpreter the new command hello associated
to this function. For that purpose, you need to create a new procedure table somewhere
after the definition of the function C Hello

CProc demoProcs[] = {

"hello",C Hello,"{{{} {Just prints a simple message !}}}",

NULL,NULL,NULL

};

CProcTable demoTable = {demoProcs, "demo", "Just some demo commands"};

A procedure table (of type CProcTable) has 3 fields :

• a list of C-procedure definitions (each of them being of type CProc) ended by 3 NULLs

• the name of the package it belongs to

• and a help describing this table.

Each procedure definition has the following syntax

<procedure name>,<C-function>,<description string>,

and the description string should follow the syntax

{{{<argument names>} {<help text>}}}

if the command is a simple command (with no actions) such as the command setv or
printf. If the command accepts several actions (such as file or stats) then the syntax
of the description string is :

{{{<action1 arg names>} {<action1 help>}}...{{<actionN arg names>} {<actionN help>}}}

You can look at the file kernel/scr/commands.c for looking at all the standard com-
mand definitions.

Now we have to declare LastWave that there is a new command table. As we have al-
ready mentionned it, this will be done in the UserInit functionof the file user/src/user.c.
You should add, at the end of this function, a simple line in order to add the table
demoTable, i.e.,

2.2. ARGUMENTS - THE PARSEARGV FUNCTION - THE TTYPE’S 17

void UserInit(void)

{
...

...

AddCProcTable(demoTable);

}

That’s it. You have defined your first new C-command. You just need to recompile
LastWave: just type make in the Makefile directory. Then just type hello in LastWave
terminal window!

Remark Let us note that, by calling several times the AddCProcTable function, you can
add as many procedure tables as you want and whenever you want (not only at startup
during the execution of the UserInit function).

Remark If several procedure tables define twice the same command name, only the last
one will be kept. However, at startup, LastWave will warn you that a C-procedure was
overwritten. In this way, if you want, you can redefine some LastWave commands

Remark If you made a syntax error in the description string of a command, LastWave
will warn you at startup, at the very beginning of the terminal window (you might need to
scroll back your terminal window, since LastWave prints a lot of things at startup).

2.2 Arguments - The ParseArgv function - The tTYPE’s

Let us write a command that has arguments. As we said, these arguments are contained
in the variable argv of type char ** in the definition of the C function associated to the
command. The variable argv[n] corresponds to the nth argument. Moreover, the function
at N arguments then argv[N] is NULL.

In LastWave version 2.0, you should never access the content of the variable
argv[n] directly. You should always use the standard C-functions to read argu-
ments.
In order to interpret these arguments as signals, listv’s, integers, floats,... you basically need
to use a single function named ParseArgv. This function allows you to read sequentially the
variable argv and interpret it according to the types you specify. Its syntax is the following
:

argv = ParseArgv(argv,<type1> ,<pointer1> ,...,<typeN> ,<pointerN> ,0 or -1);

The last argument should be 0 if you do not expect any other arguments in argv and
-1 if you want to make another call to ParseArgv later. Thus for instance, if you want to
read sequentially one string and one integer you would write :

char *str;

18 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

int i;

argv = ParseArgv(argv,tSTR,&str,tINT,&i,0);

The name of any type corresponds to a (#-defined number) and always start with the
letter t and then all the other letters are capital letters.
After these lines have been executed,

• either LastWave succeeded in reading a string (that is set in str) and then an integer
(that is set in i) and no other arguments

• or it had a problem either in reading the arguments or because there are other ar-
guments left and thus LastWave generated an error and returned automatically from
your function.

If you expect the integer to be strictly positive you could add the following line :

if (i<=0) Errorf("Sorry the second argument (%d) is not positive",i);

The Errorf function allows you to generate an error (and to return from your function
right away) while printing an error message using the same syntax as printf.

Remark Let us note that LastWave did perform some allocation for the string str. If an
error occurs, you do not have to worry, LastWave takes care of desallocation! This means
that if you want to keep the string (after the functions has returned) you must copy it.

2.3 Optional arguments - The tTYPE ’s

LastWave interpreter allows you to use optional arguments. To all types (e.g., tINT,
tSTR,...) correspond optional types by just adding a at the end of their names (e.g.,
tINT , tSTR ,...). When you want to use an optional type in ParseArgv, you must use the
following syntax

argv = ParseArgv(argv,<optionalType1> ,<defaultValue1> ,<pointer1> ,...);

Thus if you want to read an integer and an optional float with a default value of 1, you
should write

int i;

float f;

argv = ParseArgv(argv,tINT,&i,tFLOAT ,1.0,&f,0);

WARNING : Let us note that it is VERY important that you write 1.0 and not 1. It
would lead to a complete misunderstanding of your request.The default value specified after
a tFLOAT MUST BE of type double and not of type float. Actually a numeric expression
(such as 1.0) is always of type double. However, if you pass a variable after the tFLOAT ,
this variable must be of type double whereas the pointer following the default value must
be a float*. Let us note that you can use also tDOUBLE if you need to get a double value.

2.4. BASIC TTYPE’S 19

2.4 Basic tTYPE’s

We have already seen some “basic” tTYPE’s. “Basic” in the sense that they do not corre-
spond to C-structure types (as a signal or an image will be) but to basic C-types. Those
basic tTYPE’s are

• tINT, tINT : integers corresponding to the C-type int

• tFLOAT, tFLOAT : floats corresponding to the C-type float

• tDOUBLE, tDOUBLE : doubles corresponding to the C-type double

• tSTR, tSTR : strings corresponding to the C-type char *

• tCHAR, tCHAR : characters corresponding to the C-type char

• tWORD, tWORD : same as tSTR except that the argument is not evaluated

• tLIST, tLIST : this tTYPE corresponds to the LastWave type &list, i.e., list of
strings. It is stored in a C-type char ** variable. Thus, if char **list is such a
variable, list[n] corresponds to the nth string. If it has N elements then list[N] is
NULL. (Let us note that, for efficiency purposes, whatever the length of the list is, only
2 memory allocations are performed: i) list corresponds to an allocation of N char *

and ii) list[0] corresponds to an allocation of L char where L is the total size of all
the strings.).

• tWORDLIST, tWORDLIST : same as tLIST except that the argument is not evaluated.

2.5 The Parse<type> and Parse<type> functions

Let us note that the function ParseArgv returns argv+n where n is the number of arguments
that were read. Actually, ParseArgv calls for each type a C function that tries to read the
corresponding type from a string (namely argv[0] then argv[1],...). The name of these
functions are Parse<type> where <type> is the corresponding type (without the t at the
beginning and with just the first letter as capital). Thus for instance

int i;

ParseInt(argv[0],&i);

will try to read an integer from the argument argv[0] and if it succeeds it will be put
in i and if not an error will be generated. In the same way

int i,answer;

answer = ParseInt (argv[0],-1,&i);

will try to read an optional integer in i with default value -1. If it succeeded in reading
it, it will return YES (which is nothing but 1), if not it will return NO (which is 0) and it
will set an error message without generating the error. If later, for any reason you do want

20 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

to generate the corresponding error, then you can call the Errorf1 function. This function
performs the same thing as Errorf except that it inherits the previous error message (e.g.,
the one that was set by ParseInt).

Remark Let us note that for each type tTYPE there exists a C-function ParseType (for
reading a single argument) and a C-function ParseType (for reading an optional argument).

For instance, if the arguments of the command are an arbitrary number of integers. You
could do

int array[1000];

int n,i;

for (n=0;n<1000;n++) {
if (ParseInt (*argv,0,array+n) == NO) break;

argv++;

}
if (*argv != NULL) Errorf1("");

Let us note that, with a few more lines, you could do the same thing using the ParseArgv
only

int array[1000];

int n,i;

char **argv1;

for (n=0;n<1000;n++) {
argv1 = ParseArgv(argv,tINT ,0,array+n,-1);

if (argv1 == argv;) break

argv = argv1;

}
if (*argv != NULL) Errorf("");

When you expect argv to be empty (i.e., no more arguments), you could call

NoMoreArgs(argv);

that will either generate an error (”Too many arguments...”) or will just return.

2.6 Levels

As explained in the main LastWave manual, levels refers in LastWave to the different calling
environments. Let us recall that the level 0 corresponds to the global environment (the one
which is accessible in your terminal window wne you type in a command). Then each time
a script command (not a C-command!) is called, LastWave creates a level, i.e., a local
environment, in which this command will be executed. Thus, level 1 corresponds to the
environment of the script procedure called by the global environment, level 2 correponds

2.7. MANAGING ERRORS 21

to the environment of the script command called by the level 1 environment and so on.
You can also access to levels using relative reference. Thus, level -1 refers to the calling
environment, level -2 to the one that called the calling environment and so on. Level 0
always corresponds to the current environment.

Levels in LastWave correspond to the type LEVEL (which is a pointer to the C-structure
Level). You do not need to know about the specific structure of a level. You should just
know a few things about levels:

• The global variable levelCur of type LEVEL always corresponds to the current level

• The macro GetLevel(levelNum) returns the level corresponding to the level number
levelNum. Thus, for instance GetLevel(0) returns levelCur

• By default the functions Parse<type> and Parse<type> parse the string argument
in the current level. To each function Parse<type> (resp. Parse<type>) corre-
sponds a function Parse<type>Level (resp. Parse<type>Level) that parses the
string argument in the level level which is of type LEVEL and which is passed as the
first argument of these functions.

• For parsing a level number you can use the two parsing functions

– void ParseLevel(char *arg, LEVEL *level)

– char ParseLevel (char *arg, LEVEL default, LEVEL *level)

2.7 Managing Errors

Whenever an error is generated (implicitely by LastWave or explicitely by your code), the
function returns right away, proper desallocation is performed (see Sections 2.10 and 3.2.1)
and an error message is printed. We have seen that ParseArgv and the Parse<type>

functions could (implicitely) generate an error. For generating explicitely an error, we have
seen the functions Errorf and Errorf1.

If you want to print a complex error message (e.g., several lines) you could use the functions
SetErrorf and AppendErrorf :

SetErrorf(<format> ,<arg1> ,...,<argN>);

erase any former error message and sets it to the new one (using the same syntax as
printf), and the function

AppendErrorf(<format> ,<arg1> ,...,<argN>);

that just appends to the existing error message another one. Then, when you call
Errorf1 everything will be printed.

22 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

2.8 Returning a basic type value

For a command to return a value which corresponds to a basic type, you should use one of
the functions

• void SetResultInt(int i): to return the integer i

• void SetResultFloat(float f): to return the float f

• void SetResultStr(char *str): to return the string str (str will be copied)

• void SetResultf(char *format,...): to return a formatted string (using printf

format)

• void AppendResultStr(char *str): to append the string str to the string result
(allows to define the result in an incremental way)

• void AppendResultf(char *format,...): to append a formatted string to the
string result

• void SetResultList(char **list): to return the list list

• void AppendListResultStr(char *str): to append a string to a list result

• void AppendListResultf(char *format,...): to append a formatted string to a
list result.

Thus, for instance, if you want to write a command that takes 2 float arguments and that
returns their sum, you would write

C Sum(char **argv)

{
float f1,f2;

argv = ParseArg(argv,tFLOAT,&f1,tFLOAT,&f2,0);

SetResultFloat(f1+f2);

}

2.9 Command -options

In order to manage LastWave - options, you should use the ParseOption function. Af-
ter reading all the (eventually optional) arguments using the ParseArgv function or the
Parse<type> functions, the variable argv should have been incremented so that it “points”
to the first eventual option (or to just NULL if no option). Then, you should include a loop
which looks like

char opt;

...

...

while (opt = ParseOption(&argv)) {

2.9. COMMAND -OPTIONS 23

switch(opt) {
case < opt1 >:

eventual parsing of arguments after the option
break;

case < opt2 >:

eventual parsing of arguments after the option
break;

...

...

default:

ErrorOption(opt);

}
NoMoreArgs(argv);

...

...

The void ErrorOption(char opt) function allows to generate an error if the option
character opt is not valid.

Thus for instance, if you want to add an option -o to the C Sum function defined in the
previous section so that it specifies (using a single char argument) what operator should
be applied. The operator should be one of +,- or * (default is +). We should write

C Sum(char **argv)

{
float f1,f2;

char operator, opt;

argv = ParseArg(argv,tFLOAT,&f1,tFLOAT,&f2,-1);

operator = ’+’;

while (opt = ParseOption(&argv)) {
switch(opt) {
case ’o’:

argv = ParseArgv(argv,tCHAR ,’+’,&operator,-1);

if (operator != ’+’ && operator != ’-’ && operator != ’*’) Errorf("bad operator ’%s’",operator);

break;

default:

ErrorOption(opt);

}
NoMoreArgs(argv);

switch(operator) {
case ’+’:

SetResultFloat(f1+f2);

break;

case ’-’:

24 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

SetResultFloat(f1-f2);

break;

case ’*’:

SetResultFloat(f1*f2);

break;

}

2.10 Basic memory allocation

When you perform memory allocation, you should always test whether it succeeded or not.
If you did not, you should generate the corresponding error. LastWave can handle it for you
if you use LastWave allocation functions. It is strongly advised to do so. These functions
are

• void *Malloc(size t size)

• void * TMalloc(size t size)

• void *Realloc(void *ptr, size t size)

• void *Calloc(int n, size t size)

• char *CharAlloc(int size)

• float *FloatAlloc(int size)

• double *DoubleAlloc(int size)

• int *IntAlloc(int size)

• void Free(void * ptr)

they correspond to the standard C-functions for allocation

2.11 Allocation of strings and lists - Temporary pointers

As you might have noticed in one of the example above, when ParseArgv reads a string, you
do not need to specify a size for it. ParseArgv will perform automatic memory allocations.
You do not need to bother with it. Whatever the size of the string, it will be managed
properly. However, these allocations are temporary allocations that will be automatically
destroyed when your function returns (including when it returns with an error). (Let us
note that it works exactly in the same way with lists.)

If you need to, you can also declare that a pointer points to a temporary structure (that you
dinamically allocated previously), i.e., that the corresponding desallocation will be taken
care by LastWave when the command returns (with or without an error). To do so you just
need to call the function

• void TempPtr(void *ptr)

2.12. MANAGING INPUTS/OUTPUTS - STREAMS 25

or, if ptr is a dynamically allocated string, you can use equivalently

• void TempStr(char *str)

if it is a list (remember that two allocations are performed for lists as explained in Section
2.4) you should not call any of these functions. Instead, you should call

• void TempList(char **list)

If you need to keep in a global variable or in a static variable any of the allocated arguments
that you read using ParseArgv, it is very important that you do not use it as it is, since it
will be deleted when the last executed command returns. Thus you must copy it. To copy
a string you can use

• the char *CopyStr(char *str) function

• or the char *TCopyStr(char *str) function, that copies the string and make the
copy a temporary string.

In the same way for lists there are 2 functions

• the char *CopyList(char **list) function

• or the char *TCopyList(char **list) function.

Remark: Temporary pointers can be very convenient. Indeed, in a C-function, you have
to keep track of all the dynamic allocation you perform in order to be sure that when it
returns, everything that should be desallocated is desallocated. Thus each time the function
generates an error or each time the command return is used, you must perform all the
corresponding desallocation. If a lot of memory allocations are needed, the tracking can be
be pretty heavy to handle. The use of temporary pointers makes the tracking unnecessary.

Remark: as you will see in Section 3.2.3, the temporary pointer manager is able to handle
desallocation of more sophisticated structures such as signals, images,. . . .

Remark: Sometimes, you might want to use temporary pointers and, at the same time, to
control when the desallocation will be done. In order to do so you can use the functions

• void SetTempAlloc(void) : when called, this function sets an allocation “marker”

• void ClearTempAlloc(void) : when called, this function desallocates all the tem-
porary pointers that where allocated since the last “marker” and it deletes the marker.

It is important that to each call of SetTempAlloc should correspond a call of ClearTempAlloc.
You are responsible for that!

2.12 Managing inputs/outputs - Streams

2.12.1 Using C-functions dealing with the standard streams

You should avoid using the C-standard functions for i/o in the terminal window. Indeed,
since the terminal window is managed by LastWave and since possible redirections might
have been asked by the user, in order not to interfere, you should always use LastWave
C-functions. To replace the C i/o functions that deal with the standard streams (stdin,
stderr, stdout) you can use

26 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

• void Printf(char *format,...): to use instead of printf()

• void PrintfErr(char *format,...): to use instead of fprintf() using stderr

• long GetChar(void): to use instead of getchar()

• int GetLine(char *str): to get a whole line

• char Eof(void): to use instead of eof()

Let us note that, these functions can be used using different streams (see Section 2.12.3).

2.12.2 Streams in LastWave

Streams in LastWave are represented using the type STREAM which corresponds to a pointer
to the C-structure Stream. You can read a stream as an argument of a command using the
tTYPE’s tSTREAM or tSTREAM . You can also use the parsing functions

• void ParseStream(char *arg, STREAM *stream)

• char ParseStream (char *arg, STREAM default, STREAM *stream)

The standard streams are accessed through the global variables

• STREAM StdinStream: the input stream corresponding to the terminal window (cor-
responds to stdin on Unix computers)

• STREAM StdoutStream: the output stream corresponding to the terminal window
(corresponds to stdout on Unix computers)

• STREAM StderrStream: the output stream corresponding to the terminal window
(corresponds to stderr on Unix computers)

• STREAM StdnullStream: a null stream that does not do anything

The corresponding current standard streams (that might be redirected by the user) are

• STREAM StdinStream

• STREAM StdoutStream

• STREAM StderrStream

• STREAM StdnullStream

2.12.3 Functions that deal with STREAM’s

These are the main functions that let you handle STREAM’s:

• STREAM OpenFileStream(char *filename,char *mode): lets you open a STREAM

associated to the file filename (using unix syntax for directories) using the mode
mode (same mode argument as the C-function fopen())

2.13. DEFINING YOUR OWN PACKAGE 27

• STREAM OpenStringStream(char *str): lets you open an input STREAM associated
to the string str

• void CloseStream(STREAM stream): closes the stream

• void FPrintf(STREAM stream, char *format,...): same as the C-function fprintf()

excepts that it operates on STREAMs

• long FGetChar(STREAM stream): get a character from stream

• int FGetLine(STREAM stream, char *str): get a line from stream

2.12.4 Using FILE *

If, for managing i/o on files, you do not want to use STREAMs but you want to use the
C-standard FILE type, you must be aware that, depending on the computer, the syntax for
filenames (and for directories) is not the same. Thus if you want to use machine indpendant
code, you should either convert the filename before using fopen() or directly use the
FOpen() LastWave function:

• FILE * FOpen(char *file, char * mode): same as fopen() except that the file-
name is converted before calling fopen()

• int FClose(FILE *s): should be used instead of fclose() whenever you used
FOpen() instead of fopen()

• char *ConvertFilename(char *filename): returns the converted filename that you can
use with fopen() so tath your code will be machine independent.

2.13 Defining your own package

These are the first step you should follow to write your own package

• create a directory named package xxx where xxx is the name of the package. This
directory must be located in the main LastWave directory.

• create 3 subdirectories named src (for .src files), include (for .h files) and obj.

• copy the file user/obj/Makefile into the subdirectory obj.

• copy the file user/obj/FileList into the subdirectory obj. Edit it and update the
list of files (as described at the beginning of Section 2.1)

One of the file in the package xxx/src directory should contain the main definitions of the
package you created. Generally this file is called xxx package.c. This file should have two
C-functions

• The function that will be called to load the package. Generally this function is called
void LoadXXXPackage(void). This is where you add new command tables using the
AddCProcTable (as explained in Section 2.1) and new C-structure definitions that
LastWave will know about (see Section 4).

28 CHAPTER 2. ADDING SOME NEW COMMANDS USING C-LANGUAGE

• The function that declares the package and which is generally called void DeclareXXXPackage(void).
This function should call the DeclarePackage function. This last function has the
following syntax

DeclarePackage(char *packageName, void (*loadFunction)(void), int year, char *version, char *authors, char *onelineDescription);

where

– packageName is the name of the package that will be used in LastWave (e.g., to
load the package you will have to type package load packageName

– loadFunction is the function that will be called for laoding the package (this is
the function we just described and that is generally called LoadXXXPackage

– year is the year the first version of the package was written

– version is a string that characterizes the current version (e.g. "2.1b")

– authors is a string that gives the list of authors (e.g., ”John Smith and Albert
Dupond”)

– onelineDescription is a string that describes what is the use of the package

Once you have done all that, you can compile your package typing make in the Makefiles

directory. Then next time you run LastWave, your package should be declared (try the
package list command). In order to load your package you should just type package

load xxx where xxx is the package name (not quoted!)
You can add script definitions to a package. Indeed, each time a package named xxx

is loaded using the function package load, LastWave looks for a file xxx/xxx.pkg in the
scripts directory. If the directory xxx exists and contains a file named xxx.pkg, this file
is automatically sourced when the package is loaded.

Chapter 3

VALUE’s in LastWave

3.1 Playing around with complex objects

3.1.1 A simple example dealing with signals - Reference counters

Let us see how LastWave lets you handle complex objects such as signals. Let us write a
command that takes a single argument that is an input signal (i.e., an argument of type
&signali) and returnsa new signal which is the same signal added with a Gaussian noise
of variance 1. This is done in the following way

C AddNoise(char **argv)

{
SIGNAL sigIn,sigOut;

int i;

argv = ParseArgv(argv,tSIGNALI,&sigIn,0);

sigOut = NewSignal();

SizeSignal(sigOut,sigIn->size,YSIG);

for (i=0;i<sigIn->size,i++) {
sigOut->Y[i] = sigIn->Y[i]+Grand(1.0);

}

SetResultValue(sigOut);

DeleteSignal(sigOut);

}

Let us comment, this piece of code. The type of a signal is SIGNAL. It corresponds to
a pointer on a C-structure named Signal, however you will never need to use directly the
type Signal, you will always deal with SIGNALs. (Let us note that, in LastWave, when a
type is all capitalized it means that it is a pointer). Thus the first line

SIGNAL sigIn,sigOut;

29

30 CHAPTER 3. VALUE’S IN LASTWAVE

is a simple variable definition, the variable sigIn will be used to store (a pointer to)
the input signal and the variable sigOut will be used to store (a pointer to) the resulting
signal. The line

argv = ParseArgv(argv,tSIGNALI,&sigIn,0);

allows to parse the argument line. It evals the first argument of the command and
states that it should be an input signal (let us recall that an input signal is a signal that
should ot be empty). Moreover the 0 indicates that no other arguments are expected. Let
us note that a signal of type &signal (i.e., not necessary non-empty) would have been
obtained using the tTYPE tSIGNAL. Moreover as for the basic tTYPE’s, you could use the
optional tTYPE’s: tSIGNALI or tSIGNAL . If you used these optional values you would
have had to specify right after it a default value for sigIn. The “usual” default value is
NULL. Thus, for instance, if the command had a single optional input signal argument, you
would have written argv = ParseArgv(argv,tSIGNALI ,NULL,&sigIn,0); and then test
whether sigIn is NULL or not.

It is important to understand that, at this point, no allocation has been made. sigIn just
points to a signal that already existed. Now, we need to create the output signal. This is
done by

sigOut = NewSignal();

The NewSignal function allocates one instance of the structure Signal and returns a
pointer to this instance, i.e., a value of type SIGNAL. It is important to understand that, at
this point, the signal is empty. Before filling it up, you need to allocate the float arrays that
will contain the y-values and (in the case of an xy-signal) the x-values. This is done using
the SizeSignal function. Its first argument is the signal on which the allocation should
be performed, the second argument is the requested size of the signal and finally the last
argument is either YSIG if the signal is an y-signal (in which case only the y-values will be
allocated) or a xy-signal (in which case both the y-values and the x-values will be allocated).
For the sake of simplicity, we supposed that we just want to deal with the y-values, thus
we wrote

SizeSignal(sigOut,sigIn->size,YSIG);

The next step consists in filling up the output signal

for (i=0;i<sigIn->size,i++) {
sigOut->Y[i] = sigIn->Y[i]+Grand(1.0);

}

Then, we need to specify to LastWave that the result value is the signal sigOut which
is done by

3.1. PLAYING AROUND WITH COMPLEX OBJECTS 31

SetResultValue(sigOut);

Let us note that this function does not copy the signal. It just adds one reference to
the output signal. Lastwave uses reference counters for all of its “complex” structures. A
reference counter is a field of the structure (in our case a field of the structure pointed by
SIGNAL) that is a positive integer that is used to keep track of the number of variables that
point to this structure. Each time a new reference to the structure is made, the counter is
incremented by 1. Each time this reference is lost (or deleted) the counter is decremented
by 1. When it reaches 0, LastWave knows that the structure must be desallocated.

Reference counter At this point of our code, the output signal has 2 references: one which
corresponds to sigOut and another one (that is hidden to your code) that was created by
the SetResultValue call. The rule in LastWave is that you are always responsible
for the references you own. In our case, you are responsible for the sigOut reference.
You must delete this reference before the end of the command. If you don’t, the reference
sigOut will never be deleted, thus, the counter will never reach 0 and consequently the
signal it points to will never be desallocated. In order to delete the reference you own, you
must use the DeleteSignal function:

DeleteSignal(sigOut);

The DeleteSignal function basically decreases the counter by 1 and desallocate the
signal structure if it reaches 0 otherwise it just returns.

Let us note that it is very important that DeleteSignal(sigOut); is called after SetResultValue(sigOut);

and not before. Indeed, if it was called before, since there would be a single reference to
sigOut the call to DeleteSignal(sigOut); would desallocate the signal, so you would not
be able to return it. (Basically, you have to think this way: since we deleted the reference
sigOut, you cannot use the variable sigOut anymore).

Other tTYPE’s and Parse functions related to signals In the same way as for basic
tTYPE’s (see Section 2.5), you could have used the function ParseSignalI instead of the
general ParseArgv function, i.e., the line

argv = ParseArgv(argv,tSIGNALI,&sigIn,0);

would then have been replaced by the lines

ParseSignalI(*argv,&sigIn);

argv++;

NoMoreArgs(argv);

As for basic tTYPE’s (see Section 2.5), the following functions exist: ParseSignalI,
ParseSignalI , ParseSignal (for &signal) and ParseSignal.

32 CHAPTER 3. VALUE’S IN LASTWAVE

3.1.2 Temporary signals

In the last example we saw that we had to call DeleteSignal(sigOut); before leaving the
function. That means that if, you write a more complex command, that could generate
errors, i.e., before the error is generated you must call DeleteSignal(sigOut);. This is
possible (though not very practical) if it is the C-function you write that generates the error,
however if your function calls another C-function that generates an error, LastWave will re-
turn directly from this last function, there is no way you can call DeleteSignal(sigOut);.

There is a very convenient way for not having to deal with the DeleteSignal(sigOut);
call. You just need to declare to LastWave that the reference you own is temporary. As
for temporary pointers to basic types (see Section 2.11), it basically means that LastWave
will delete it when the command is over. In order to declare the reference sigOut to be
temporary, you can either write

sigOut = NewSignal();

TempValue(sigOut);

or more concisely

sigOut = TNewSignal();

(the T in TNewSignal stands for Temporary). Thus the whole code becomes

C AddNoise(char **argv)

{
SIGNAL sigIn,sigOut;

int i;

argv = ParseArgv(argv,tSIGNALI,&sigIn,0);

sigOut = TNewSignal();

SizeSignal(sigOut,sigIn->size,YSIG);

for (i=0;i<sigIn->size,i++) {
sigOut->Y[i] = sigIn->Y[i]+Grand(1.0);

}

SetResultValue(sigOut);

}

You should use temporary references as much as you can, it generally leads to much
smaller code.

Warning: You cannot use the TempPtr function as seen in Section 2.11 to make the
reference sigOut temporary. Indeed TempPtr does not deal with reference counters.
Making a pointer temporary using the TempPtr function will systematically lead (at the

3.2. ABOUT VALUE’S 33

end of the command) to desallocation of the memory it points to (using a simple free

call). Making it temporary using TempValue assumes the pointer points to a structure that
includes a reference counting system.

3.1.3 A simple example dealing with listvs

As for signals, a &listv is represented by the type LISTV which corresponds to a pointer
to the structure Listv. For parsing listv arguments you can use the tTY PE’s tLISTV and
tLISTV and the parsing functions ParseListv and ParseListv . Let us write a command
that returns a listv whose elements are the y-values of an input signal (eventually empty):

C Sig2Listv(char **argv)

{
SIGNAL sigIn;

LISTV lv;

int i;

argv = ParseArgv(argv,tSIGNAL,&signal,0)

lv = TNewListv();

SetLengthListv(lv,signal->size);

for (i=0;i<signal->size;i++) {
AppendFloat2Listv(lv,signal->Y[i]);

}

SetResultValue(lv);

}

We are not give detailed description for this code. It should be pretty clear. Let us just
note that

• TNewListv allocates a listv structure and returns a pointer to this listv, i.e., a pointer
of type LISTV. As for signals, the listv structure uses a reference counter. The call
TNewListv makes the returned reference temporary. Another way to write the same
thing would have been to call NewListv and then TempValue.

• The listv is initially created with a length of 0. SetLengthListv is used to specify
the length.

• AppendFloat2Listv appends a float at the end of the listv.

3.2 About VALUE’s

3.2.1 What is a VALUE?

LastWave commands are able to deal with values that could be of very different types. They
can be argument of a command or can be returned by a command. In Chapter 2 we have

34 CHAPTER 3. VALUE’S IN LASTWAVE

learned how to deal with some “basic” types such as floats or strings, i.e., types that do not
require a C-structure to be implemented. For the sake of simplicity as well as for efficiency
purposes, LastWave lets you deal with these basic types as regular C-types.

In the last section, we have seen values which corresponded to “high-level” C-structures:
the SIGNAL value and the LISTV value. You might have noticed that some C-functions were
able to work on both SIGNAL and LISTV. For instance, this is the case of the function
SetResultValue that is used in a command to specify what value should be returned, or
the function TempValue that is used to declare to LastWave that a reference is temporary.
This is possible because those “high-level” structures “inherit” from a common structure,
the Value structure. By “inherits”, we mean that they have a common header, i.e., the
C-structures starts with the same fields. This set of common fields are grouped into the
Value structure. The type VALUE is the type which corresponds to a pointer to a Value

structure.

As we will see later on, not only listvs or signals but also ranges, images, scripts, pro-
cedures . . . all of them correspond to pointers to structures that have the same first fields,
i.e., the fields of the structure Value. Thus they can all be considered as (i.e., casted to)
VALUE.

Remark: In LastWave, the defined types always start with a capital letter (e.g., Value).
Moreover, to most of the defined types corresponds a type which is a pointer to this type.
This pointer type has the same name as the type it points to except that all the letters
are capitalized (e.g., VALUE). Since, in LastWave, basically you only deals with pointers,
you will only deal with the “all capitalized” types (e.g., SIGNAL, IMAGE, LISTV, RANGE,

...).

Thus, for instance, the definition of the signal structure will define two new types, the type
Signal which corresponds to the C-structure and the SIGNAL type which corresponds to
pointer on Signal. Thus it will look like

typedef struct signal {
/* The common fields of all Value’s */

ValueFields;

...

The specific fields for signals
...

} Signal, *SIGNAL;

The keyword ValueFields corresponds to a macro that defines the fields common to
all Value’s.

Important remark: Actually, even strings and floats are stored internally using C-
structures inheriting from VALUE (to learn about STRVALUE and NUMVALUE, see Sections
3.10 and 3.9). However, as we already explained, both for efficiency reasons and for the
sake of simplicity, LastWave lets you handle basic types such as strings and floats using
regular C-types. Thus, for instance, if your command should return a float value, instead of
creating a NUMVALUE and using SetResultValue, you can directly call the SetResultFloat
function.

3.2. ABOUT VALUE’S 35

3.2.2 Returning a VALUE - The SetResultValue function

As we have already seen, whenever a command should return a value you must use the
function

SetResultValue(VALUE value);

Actually this is a macro, so you do not need to cast the value to the VALUE type. Thus,
for instance you can write

SIGNAL sig;

SetResultValue(sig);

and you do not need to write

SIGNAL sig;

SetResultValue((VALUE) sig);

Let us note that the call to SetResultValue increments the reference counter of the
VALUE by 1. To learn more about the reference counters you should first read the previous
Sections 3.1.1, 3.1.2, 3.1.3 and then the next section.

3.2.3 Reference counting of VALUEs - Temporary VALUEs

Before reading this section you should read Sections 3.1.1, 3.1.2 and 3.1.3.
Each VALUE includes a reference counter that is used to count the number of references to
this specific VALUE. Whenever you create a reference, you are responsible for it, i.e., you are
responsible for deleting it. To delete a reference, you can either use the generic macro

DeleteValue(VALUE value);

(since it is a macro no cast is necessary) or (this is completely equivalent) you can use the
specific functions such as DeleteSignal or DeleteListv. Each time you delete a reference
the counter is decremented by 1. The C-structure the VALUE points to is desallocated as
soon as the corresponding counter reaches 0.
Sometimes, tracking the references you create is the pain in the neck. You can avoid doing
that by declaring the reference as a temporary reference. This is done using the function

void TempValue(VALUE reference);

A reference which is declared as temporary will be destroyed as soon as the
current LastWave command ends. In Sections 3.1.1 we have alraedy seen an example
of how to use the TempValue function.
Let us note that the references created by a parsing function (e.g., ParseArgv, ParseSignal,
ParseSignal) is automatically declared as temporary. So you are not responsible for it.
Thus, in the simple example

36 CHAPTER 3. VALUE’S IN LASTWAVE

C Mean(char **argv)

{
SIGNAL sig;

float mean;

argv = ParseArgv(argv,tSIGNALI,&sig,0);

mean = 0;

for (i=0;i<sig->size;i++) {
mean += sig->Y[i];

}
mean /= sig->size;

SetResultFloat(mean);

}

the reference sig that is created by the ParseArgv call is declared temporary by
the ParseArgv function itself, you do not own the reference, so you must not call
DeleteValue(sig). In the case you need to keep a reference to the signal sig (e.g., you
want to keep it in a static variable) you can increment the reference counter by 1 using
the macro

AddRefValue(VALUE value);

(no cast is necessary).

In any case, the parsing functions in LastWave take care of the desallocation of
the arguments they return. If they correspond to basic C-types, they are tem-
porary pointers and consequently they will be desallocated automatically when
the current command ends. If they correspond to VALUEs, they are temporary
references of these VALUEs.

3.2.4 The tVAL and tVALOBJ tTYPE’s

You can parse a VALUE using the ParseArgv function, along with the tVAL type. Thus if you
want to write a command that has a single argument which is of type &val (i.e., anything
that can be evaluated) and display it, you would write

C MyPrint(char **argv)

{
VALUE *val;

argv = ParseArgv(argv,tVAL,&val,0);

PrintValue(val);

}

3.2. ABOUT VALUE’S 37

Let us note that this is exactly how the print command works. As we will explain
later on, the function PrintValue basically sends the message print to the value val. Of
course, an optional value can be specified using tVAL . In the same way the type &valobj

corresponds to the tTYPE tVALOBJ (or tVALOBJ if optional).

Several parse functions can be used for parsing values (of any type). Using the standard
syntax, these functions are

• char ParseVal (char *arg, VALUE defVal, VALUE *val)

• void ParseVal(char *arg, VALUE *val)

• char ParseValLevel (LEVEL level, char *arg, VALUE defVal, VALUE *val)

• void ParseValLevel(LEVEL level, char *arg, VALUE *val)

• char ParseValObj (char *arg, VALUE defVal, VALUE *val)

• void ParseValObj(char *arg, VALUE *val)

• char ParseValObjLevel (LEVEL level, char *arg, VALUE defVal, VALUE *val)

• void ParseValObjLevel(LEVEL level, char *arg, VALUE *val)

Remark: As you we have seen in the previous section, for reading values of
specific types, e.g., signals, listvs, . . . , you can use specific tTYPE’s such as
tSIGNAL or tLISTV.

3.2.5 The GetTypeValue macro - Casting VALUE’s - Static string type

In order to get the &type of a VALUE, you must use the GetTypeValue macro. It returns
a static string corresponding to the type. It is a static string so that you can make direct
comparisons using ==. The LastWave type &<type> corresponds to a static string type in
C called <type>Type. Thus for instance, the &listv type corresponds to the static string
listvType. When you know what the type of the value is you can cast it. However, in
order to cast it, you must first use the ValueOf macro. Lets see how it works on a simple
example. Let us write a command that takes a single argument that could be either a listv
or a signal and that performs actions depending on what it is.

C MyCmd(char **argv)

{
LISTV lv;

SIGNAL signal;

VALUE val;

char *type;

argv = ParseArgv(argv,tVAL,&val,0);

type = GetTypeValue(val);

38 CHAPTER 3. VALUE’S IN LASTWAVE

if (type == listvType) {
lv = (LISTV) ValueOf(val);

...

...

}
else if (type == signalType || type == signaliType) {
signal = (SIGNAL) ValueOf(val);

...

...

}
else Errorf("Bad type ’%s’ for argument",type);

}

It is clear that, most of the time, the arguments of a command have a definite
type. In that case, it is much easier to just use the ParseArgv function using
the right tTY PE’s. The type VALUE is only useful when an argument could be
of different types. Let us note that, even in this latter case, you can avoid using VALUE,
e.g.,

C MyCmd(char **argv)

{
LISTV lv;

SIGNAL signal;

argv = ParseArgv(argv,tSIGNAL ,NULL,&signal,0);

if (signal == NULL) {
argv = ParseArgv(argv,tLISTV,&lv,0);

...

...

}
else {
...

...

}
}

3.2.6 C-macros dealing with VALUEs

• DeleteValue(VALUE ref) : macro to delete a reference to a VALUE

• NewValue(TYPESTRUCT ts) : macro to create a new VALUE corresponding to the type
ts (to learn about TYPESTRUCT you should read Section 4.2)

• ToStrValue(VALUE value, char flagShort) : macro that returns a string (“short”
or “long” depending on the flag flagShort) that represents the value value. The

3.3. MANAGING &LISTV 39

“long” representation is used by LastWave to display the returned value of a com-
mand and the “short” representation is used by LastWave when the value is within
a listv which is displayed.

• PrintValue(VALUE value) : macro that prints a value the same way the print

command does

• PrintInfoValue(VALUE value) : macro that prints information on a value the
same way the info command does

• TempValue(VALUE ref) : macro that makes a reference to a VALUE temporary

• AddRefValue(VALUE value) : macro that increments the reference counter of a
value by one

• RemoveRefValue(VALUE value) : macro that decrements the reference counter of a
value by one

• SetResultValue(VALUE value) : macro that sets the returned value of a command

• GetTypeValue(VALUE value) : macro that returns the static string taht corresponds
to the type of the value

• ValueOf(VALUE value) : macro that returns a valid VALUE for casting purposes (see
previous section).

3.3 Managing &listv

As we have already explained (see Section 3.1.3), &listv are represented using the LISTV

type which is a pointer to the structure Listv. They can store a list of VALUEs which can
be of any type. Actually, for efficiency reasons, floats are not stored using VALUEs in a listv,
they are stored directly as floats. Thus, as you will notice, in the C-functions that deal with
the elements of a listv, floats always appear as particular cases.

The static string type of a listv (i.e., the string returned by the GetTypeValue function) is
listvType.

The corresponding tTY PE’s are tLISTV and tLISTV . For parsing argument you can use
the parsing functions

• void ParseListv(char *arg, LISTV *plv)

• char ParseListv (char *arg, LISTV default, LISTV *plv)

• void ParseListvLevel(LEVEL level, char *arg, LISTV *plv)

• char ParseListvLevel (LEVEL level, char *arg, LISTV default, LISTV *plv)

You should not manipulate directly the structure of a listv. You should use the functions
describe below:

• LISTV NewListv(void) : allocating an empty listv

40 CHAPTER 3. VALUE’S IN LASTWAVE

• LISTV TNewListv(void) : creating a temporary listv (an already allocated listv

can be made temporary using TempValue(VALUE val))

• void DeleteListv(LISTV lv) : deleting a listv (instead, you could call the macro
DeleteValue(VALUE val))

• void ClearListv(LISTV lv) : empties the listv

• LISTV CopyListv(LISTV lvIn, LISTV lvOut) : if lvOut is NULL it returns a copy
of the listv lvIn otherwise it copies lvIn into lvOut (in any case, the elements of the
listv are not copied)

• void SetLengthListv(LISTV lv, int length): sets the length of a listv (per-
forms allocation)

• int GetLengthListv(LISTV lv): returns the length of a listv

• char *GetListvNth(LISTV lv, int n, VALUE *v, float f) : gets the nth ele-
ment of a listv. If it is a float then v is NULL and f is the corresponding float other-
wise v contains the corresponding VALUE. In any case it returns the static string that
corresponds to the type of the cooresponding element (e.g., numType, signalType,
listvType,...)

• float GetListvNthFloat(LISTV lv, int n) : tries to read the nth element of a
listv as a float. If it is not a float, it generates an error

• char *GetListvNthStr(LISTV lv, int n) : tries to read the nth element of a listv
as a float. If it not a string, it generates an error

• void SetListvNthValue(LISTV lv, int n, VALUE *v) : sets the nth element of
a listv with the VALUE v. No allocation is made, i.e., n must be strictly smaller than
the length of the listv

• void SetListvNthFloat(LISTV lv, int n, float f) : sets the nth element of a
listv with the float f. No allocation is made, i.e., n must be strictly smaller than the
length of the listv

• void AppendValue2Listv (LISTV lv, VALUE val) : appends a value at the end
of a listv (allocation might be performed)

• void AppendFloat2Listv(LISTV lv, float f) : appends a float at the end of a
listv (allocation might be performed)

• void AppendInt2Listv(LISTV lv, int i) : appends an integer at the end of a
listv (allocation might be performed)
item void AppendStr2Listv(LISTV lv, char *) : appends a string at the end of
a listv (allocation might be performed)
item void AppendListv2Listv(LISTV lv, LISTV lv1) : appends a listv at the
end of a listv (allocation might be performed)

• void ConcatListv(LISTV lv1,LISTV lv2,LISTV lvOut) : concatenates two listv’s

3.4. MANAGING &PROC 41

• void MultListv(LISTV lv1,int n,LISTV lvOut) : fills lvOut with the repetition
pf lv1 n times.

3.4 Managing &proc

Commands correspond to the LastWave type &proc. In the C-language, they are repre-
sented using the type PROC which corresponds to a pointer to the C-structure Proc. This
structure is used to store both commands defined in the C-language and commands de-
fined using LastWave command language, i.e., a script command (which could eventually
be anonymous). The flag flagSP of the structure is set to 1 if the command corresponds
to script command otherwise it is 0.
The static string type of a PROC (i.e., the string returned by the GetTypeValue function) is
procType.
The corresponding tTY PE’s are tPROC and tPROC . For parsing argument you can use the
parsing functions

• void ParseProc(char *arg, PROC *pProc)

• char ParseProc (char *arg, PROC default, PROC *pProc)

• void ParseProcLevel(LEVEL level, char *arg, PROC *pProc)

• char ParseProcLevel (LEVEL level, char *arg, PROC default, PROC *pProc)

You should not manipulate directly the structure of a PROC. The only functions you might
need to use are

• void ApplyProc2Listv(PROC proc, LISTV lv): This function allows to apply a
command proc using as arguments the elements of the listv lv. The result is stored as
the returned value of the current command. You can use the GetResult... functions
(see Section 3.4.1) to get the result. To see an example of how to use this function, you
should look into the file kernel/src/int listv.c for the function SortListv(...).
This function is able to sort a listv using any PROC as a sorting function.

• void ApplyProc2List(PROC proc, char **argv): This is the same function as
ApplyProc2Listv except that the list of argument is a list of strings (of type tLIST,
see Section 2.4) that will be evaluated in the current level before being passed to the
command.

3.4.1 The GetResult... functions

To get the result of a command that was just executed, you can use the following functions

• char *GetResultType(void): returns a string which corresponds to the static string
type (e.g., listvType, signalType, numType, . . .).

• VALUE *GetResultValue(void): returns the result as a VALUE

• char * GetResultStr(void): returns the result as a string if the result is of type
strType

42 CHAPTER 3. VALUE’S IN LASTWAVE

• int GetResultInt(void): returns the result as an integer if it is of type numType

and if it is an integer

• float GetResultFloat(void): returns the result as a float if it is of type numType

3.5 Managing &script

Scripts correspond to the LastWave type &script. In the C-language, they are represented
using the type SCRIPT which corresponds to a pointer to the C-structure Script. To get
the script of a PROC (which must of course correspond to a script command and
not a C-command, i.e., whose field flagSP is set to 1), you must use the following field

PROC proc;

SCRIPT script = proc->sp->script;

The static string type of a SCRIPT (i.e., the string returned by the GetTypeValue or the
GetResultType function) is scriptType.
The corresponding tTY PE’s are tSCRIPT and tSCRIPT . For parsing argument you can
use the parsing functions

• void ParseScript(char *arg, SCRIPT *pScript)

• char ParseScript (char *arg, SCRIPT default, SCRIPT * pScript)

• void ParseScriptLevel(LEVEL level, char *arg, SCRIPT *pScript)

• char ParseScriptLevel (LEVEL level, char *arg, SCRIPT default, SCRIPT *

pScript)

You should not manipulate directly the structure of a SCRIPT. The only function you might
need to use are

• void EvalScriptLevel(LEVEL level, SCRIPT script,char flagStoreResult); this
function lets you evaluate the script script in the level level (let us recall that the
current level is the global variable levelCur). If the flag flagStoreResult is set to
1 then the result of the last command of the script is saved by LastWave as if it was
the result of a command that was just executed. In that case, you can get the result
using the GetResult... functions (see Section 3.4.1). If you do not need to save the
result, you should flagStoreResult to 0.

3.6 Managing &signal

3.6.1 The SIGNAL type and the corresponding tTY PE’s

Signals correspond to the LastWave types &signal or &signali (for non empty signals). In
the C-language, they are represented using the type SIGNAL which corresponds to a pointer
to the C-structure Signal. The static string types of a SIGNAL (i.e., the string returned by
the GetTypeValue or the GetResultType function) is signalType or signaliType.

3.6. MANAGING &SIGNAL 43

The corresponding tTY PE’s are tSIGNAL and tSIGNAL or tSIGNALI and tSIGNALI . The
last two tTY PE’s will parse only signals that are not empty whereas the first two will parse
any signal (empty or non empty). For parsing argument you can use the parsing functions

• void ParseSignal(char *arg, SIGNAL *pSignal)

• char ParseSignal (char *arg, SIGNAL default, SIGNAL * pSignal)

• void ParseSignalI(char *arg, SIGNAL *pSignal)

• char ParseSignalI (char *arg, SIGNAL default, SIGNAL * pSignal)

• void ParseSignalLevel(LEVEL level, char *arg, SIGNAL *pSignal)

• char ParseSignalLevel (LEVEL level, char *arg, SIGNAL default, SIGNAL *

pSignal)

• void ParseSignalILevel(LEVEL level, char *arg, SIGNAL *pSignal)

• char ParseSignalILevel (LEVEL level, char *arg, SIGNAL default, SIGNAL

* pSignal)

The SIGNAL type is defined in the file package/ signals/include/signals.h. It corre-
sponds to a pointer to the structure struct signal (or Signal) which defines all the fields
of a signal. There should not be any use for you to handle directly a variable of type struct
signal, you should only use variables of type SIGNAL. The only fields of the signal structure
you should know about are

int size; /* the size of the signal (i.e., number of samples) */

int type; /* the type of the signal. If it is YSIG then it means that just the Y array is used and the samples are equally sampled using the fields x0 and dx. If it is XYSIG both arrays Y and X are used */

float *Y; /* the ordinate array */

float *X; /* the abscissa array (for XYSIG only) */

float x0; /* first abscissa value (for YSIG only) */

float dx; /* distance between two successive samples (for YSIG only) */

char *name; /* The name of the signal. Should be set using the SetNameSignal(SIGNAL sig, char *name) function only ! */

int firstp; /* The index of the first sample not affected by border effects */

int lastp; /* The index of the last sample not affected by border effects */

In order to allocate the arrays X and Y of a signal you should use the SizeSignal

function. Its syntax is

void SizeSignal(SIGNAL signal, int size, int type)

It performs all the desallocations and allocations in signal so that it will be allow to
store a signal of type type (which must be one of XYSIG or YSIG) and of size size. Let us
note that it initializes the fields x0, dx, firstp and lastp.
Section 3.1.1 gives you an example of how to handle SIGNAL’s.
If you want to write a command which syntax is

44 CHAPTER 3. VALUE’S IN LASTWAVE

mysin <signal> <size>

and who sets the signal <signal> so that it corresponds to onne arc of a sinusoid on
<size> points uniformly sampled between 0 and 1, you would write

C MySin(char **argv)

{
char **argv;

int size;

argv = ParseArgv(argv,tSIGNAL,&signal,tINT,&size,0);

SizeSignal(signal,size,YSIG);

for (i=0;i<size;i++) signal->Y[i] = sin((2*PI*i)/size);

signal->x0 = 0;

signal->dx = 1.0/size;

}

3.6.2 Basic functions for dealing with SIGNAL’s

• SIGNAL NewSignal(void): allocates a SIGNAL

• SIGNAL TNewSignal(void): allocates a temporary SIGNAL

• void DeleteSignal(SIGNAL ref): deletes a SIGNAL reference (same as DeletValue(ref))

• void ClearSignal(SIGNAL signal): inits all the fields of a SIGNAL (including de-
sallocation of the X and Y arrays)

• void SizeSignal(SIGNAL signal, int size, int type): ensures that both the
X and Y arrays have sufficient allocation to store a signal of size size and of type
type (which must be either XYSIG or YSIG). Sets the size field to size, firstp to 0,
lastp to size-1.

• void CopyFieldsSig(SIGNAL in,SIGNAL out): copies the fields (except X and Y)
of the signal in to the fields of the signal out

• void CopySig(SIGNAL in, SIGNAL out): copies (all the fields including the values
in X and Y) the signal in to the signal out

• float XSig(SIGNAL sig,int index): returns the x value corresponding index index

(handles both XYSIG or YSIG)

• int ISig(SIGNAL signal,float xValue): returns the closest index corresponding
to the x alue xValue (handles both XYSIG or YSIG)

3.6. MANAGING &SIGNAL 45

• void ZeroSig(SIGNAL sig): sets the y value of a signal to 0.

Signals of type XYSIG must always have an X array which sorted in an increasing
order. If you fill up the X array with non sorted values, you can use the SortSig()

function to sort it (see next Section)

3.6.3 Mathematical functions on SIGNAL’s

Each time a function has a parameter named flagCausal, it means that if this flag is set,
only the indices between firstp (included) and lastp (included) are taken into account.

Each time a function has a parameter named borderType, it specifies the border effects and
the value of borderType must be one of BorderPad (constant border effect), BorderPad0
(zero border effect), BorderPeriodic (periodic border effect), BorderMirror (mirror border
effect).

Basic functions

• void ExtractSig(SIGNAL sig,SIGNAL sigOut, int borderType, int firstPoint,int

newSize): extracts the signal sig from the first index firstPoint (which can be out
of range) on a number of points of newSize.

• void MinMaxSig(SIGNAL signal,float *pxMin,float *pxMax,float *pyMin,float

*pyMax, int *piyMin,int *piyMax,int flagCausal): computes the the min and
max y and x values of the signal. When it returns, *pxMin (resp. *pxMax) corresponds
to the minimum (resp. maximum) x value. *pyMin (resp. *pyMax) corresponds to the
minimum (resp. maximum) y value and *piyMin (resp. piyMax) to the corresponding
indices.

• void PaddSig(SIGNAL sig,SIGNAL sigOut,int borderType,int newSize): padds
a signal sig (the resulting signal is set into sigOut) so that its new size is newSize.

• void ThreshSig(SIGNAL in, SIGNAL out, int flagX, int flagY,int flagMin,

float min, int flagMax,float max): thresholds the signal in and puts the result
into the signal out between values min and max. If flagX is set, the threshold is on
x values. If flagY is set, the threshold is on y values. If flagMin (resp. flagMax) is
not set then min (resp. max) is not taken into account.

• void SortSig(SIGNAL signal): is signal is of tpe XYSIG, it sorts the x values (and
move the corresponding y values). If it is of type YSIG, it sorts the y values. In any
case the sorting is made in increasing order.

Advanced functions

• float GetCorrelation(SIGNAL signal1,SIGNAL signal2,int flagCausal): re-
turns the correlation between signal1 and signal2.

• float GetLpNormSig(SIGNAL signal, float p,int flagCausal): returns the Lp
norm of signal

46 CHAPTER 3. VALUE’S IN LASTWAVE

• float GetNthMoment(SIGNAL signal, int n, float *pNthMoment,int flagCausal,

int flagCentered): returns in *pNthMoment the nth moment of the y values of the
signal. If flagCentered is set the centered nth moment is computed. In any case
the mean of the signal is returned.

• float GetAbsMoment(SIGNAL signal, float f1, float *pMoment,int flagCausal,

int flagCentered): same as GetNthMoment() except the moment is computed using
the absolute value of the y values

• void HistoSig(SIGNAL input, SIGNAL output, int n,float xmin, float xmax,float

ymin, float ymax, SIGNAL weight, int flagCausal): computes in output an
histogram with n branches of the y values of the signal input. If xMin<xMax, only
the y values corresponding to abscissa between xMin and xMax are taken into account.
If yMin<yMax, only the y values between yMin and yMax are taken into account. If
weight is not NULL, it must be of the same size as the input signal and it corresponds
to weights on each y value.

• void LineFitSig(SIGNAL signal,float *pA,float *pSigA,float *pB,float *pSigB,int

iMin,int iMax): performs a linear fit of signal signal (using L2 minimization) re-
stricted to the index range [iMin,iMax]. The linear fit is y=ax+b, a is stored in *pA

and b in *pB. The satndard deviation of a (resp. b) is stored in *pSigA (resp. *pSigB).

• void FFTConvolution (SIGNAL signal, SIGNAL filter, SIGNAL out, int borderType,

float xMin, float xMax): computes the convolution of the signal in (which is
padded using borderType) with the (compact support) filter and puts the result in
the signal out. The convolution is computed in between the abscissa xMin and xMax.
The fast convolution algorithm with FFT is used. This function deals also wit the
border type BorderMir1.

• void DirectConvolution (SIGNAL signal,SIGNAL filter, SIGNAL out, int borderType,

float xMin, float xMax): computes the convolution of the signal in (which is
padded using borderType) with the (compact support) filter and puts the result in
the signal out. The convolution is computed in between the abscissa xMin and xMax.
The direct convolution algorithm is used. This function deals also wit the border type
BorderMir1.

• void Fft(SIGNAL inReal,SIGNAL inImag,SIGNAL outReal,SIGNAL outImag,int

fftSign,char flagShift): if fftSign is 1, it computes the Fourier transform of the
complex signal whose real part is inReal and the imaginary part is inImag. The input
signal must have a size which is a power of 2. The (complex) result is put in the signals
outReal and outImag. If the input signal is real then you should set inImag to NULL.
In this case, if its size is N then the output signals have the size N/2+1 corresponding
to the frequencies [0,π]. In the case the input signal is complex, the output signals
have the same size as the input signals and correspond to the frequencies [0,2π[

unless flagShift is set to 1 in which case the frequencies are [-π, π[. If fftSign is
set to -1, the exact inverse action is performed (in that case if the input signals have
a size of N/2+1 the ouput signal will be real).

3.6. MANAGING &SIGNAL 47

3.6.4 i/o functions for SIGNAL’s

For output

• void WriteSigStream(SIGNAL signal,STREAM stream, char flagBinary, char

*mode,int flagHeader): writes the signal in the stream. If flagBinary is 1, it is
written using binary coding, if it is 0 it is written using ascii coding. If flagHeader
is 0 then no header (i.e, field values) is written. In both ascii and binary coding mode

must be one of "xy" (in ascii coding, two columns are written, one for x values and
one for y values, in binary coding x values are followed by y values), "yx" (same as
"xy" except that x and y are exchanged), "y" (only y values are written), "x" (only
x values are written) or "" (LastWave uses the more “efficient” mode, e.g., for YSIG

signals the x values are not written extensively).

• void WriteSigFile(SIGNAL signal,char *filename, char flagBinary, char *mode,int

flagHeader): same as WriteSigStream() except that it writes into the file named
filename

• void WriteSigRawStream(SIGNAL signal,STREAM stream, char binaryCoding):
writes the y values of the signal in the stream using a raw format, i.e., binary cod-
ing is used and there is no header. binaryCoding is one of BinaryBigEndian or
BinaryLittleEndian depending on the coding you want to use (you can test the
variable IsCPULittleEndian to know the coding type of the computer you are run-
ning LastWave on).

• void WriteSigRawFile(SIGNAL signal,char *filename, char binaryCoding): same
as WriteSigRawStream except that it writes into the file named filename

For input

• char ReadInfoSigStream(STREAM stream, SIGNAL siginfo, char *header, char

*binaryMode, char *binaryCoding, int *nColumns) reads information about a
signal storedin a stream without reading the signal values themselves. When this
function returns, the fields of siginfo contains the corresponding fields of the signal
in the stream (except for the Y and X arrays), *header is YES if there is a header
and NO if not, *binaryMode is YES if the signal is binary coded and NO if ascii coded,
*binaryCoding is one of BinaryBigEndian or BinaryLittleEndian and *nColumns

is the number of columns (only if *binaryMode is NO). The function returns YES if the
format is valid LastWave format and NO otherwise. In any case, the position

of the stream is not change.

• char ReadInfoSigFile(char *filename, SIGNAL siginfo, char *header, char

*binaryMode, char *binaryCoding, int *nColumns): same as ReadInfoSigStream
except that it reads from the file named filename

• void ReadSigStream(SIGNAL signal,STREAM stream, int firstIndex,int sizeToRead,

int xcol,int ycol): function to read a signal from a stream. It knows how to
read any stream that was generated by the WriteSigStream() function. Moreover,
it can also be used for multicolumn (any number) ascii coding too. firstIndex is the
first index to be read in the stream (starting from 0), sizeToRead is the total number

48 CHAPTER 3. VALUE’S IN LASTWAVE

of values to be read from this first index. In the case the coding is an ascii coding,
xcol (resp. ycol) is the number of the column (starting from 1) corresponding to the
x (resp. y) values. If xcol or ycol is 0, LastWave tries to make some inductions on
what to do. If xcol is -1, then no x values are read.

• void ReadSigFile(SIGNAL signal,char *filename, int firstIndex,int sizeToRead,

int xcol,int ycol): same as ReadSigStream except that it reads from the file
named filename

• void ReadSigRawStream(SIGNAL signal,STREAM stream, int firstIndex,int sizeToRead,

char binaryCoding): function to read from a stream a signal which is coded in
a raw format, i.e., no header and binary coding. firstIndex is the first index to
be read in the stream (starting from 0), sizeToRead is the total number of val-
ues to be read from this first index. *binaryCoding is one of BinaryBigEndian or
BinaryLittleEndian.

• void ReadSigRawFile(SIGNAL signal,char *filename, int firstIndex,int sizeToRead,

char flagMode): same as ReadSigStream except that it reads from the file named
filename.

3.7 Managing &range

Let us recall that whenever a signal is expected, a range will be automatically
converted to a signal. Thus it is very rare that you will want to manipulate
explicitely ranges. Generally, you want to use ranges for efficiency since a signal
uses more memory (all the values are stored) than a range. This is, for instance,
the case of the foreach command.
Signals correspond to the LastWave types &range. In the C-language, they are represented
using the type RANGE which corresponds to a pointer to the C-structure Range. The static
string types of a RANGE (i.e., the string returned by the GetTypeValue or the GetResultType
function) is rangeType.
The corresponding tTY PE’s are tRANGE and tRANGE . For parsing argument you can use
the parsing functions

• void ParseRange(char *arg, RANGE *pRange)

• char ParseRange (char *arg, RANGE default, RANGE * pRange)

• void ParseRangeLevel(LEVEL level, char *arg, RANGE * pRange)

• char ParseRangeLevel (LEVEL level, char *arg, RANGE default, RANGE * pRange)

The RANGE type is defined in the file package/ signals/include/value.h. It corresponds
to a pointer to the structure struct range (or Range) which defines all the fields of a range.
The only fields of the range structure you should know about are

float first; /* the first value of the range*/

float step; /* the step of the range */

int size; /* the number of points of the range */

3.8. MANAGING &IMAGE 49

You should know about the macros

• RangeVal(RANGE range, int n): returns the nth value of the range

• RangeLast(RANGE range): returns the last value of the range

• RangeFirst(RANGE range): returns the first value of the range

• RangeMin(RANGE range): returns the minimum value of the range

• RangeMax(RANGE range): returns the maximum value of the range

You should know also about the allocation functions

• RANGE NewRange(void): to create a range

• RANGE TNewRange(void): to create a temporary range (you could as well use TempValue(range)
to make a range temporary)

• void DeleteRange(RANGE ref): to delete a reference to a range (you could as well
use DeleteValue(range).

3.8 Managing &image

3.8.1 The IMAGE type and the corresponding tTY PE’s

Images correspond to the LastWave types &image or &imagei (for non empty images). In
the C-language, they are represented using the type IMAGE which corresponds to a pointer
to the C-structure Image. The static string types of an IMAGE (i.e., the string returned by
the GetTypeValue or the GetResultType function) is imageType or imageiType.
The corresponding tTY PE’s are tIMAGE and tIMAGE or tIMAGEI and tIMAGEI . The last
two tTY PE’s will parse only images that are not empty whereas the first two will parse
any image (empty or non empty). For parsing argument you can use the parsing functions

• void ParseImage(char *arg, IMAGE *pImage)

• char ParseImage (char *arg, IMAGE default, IMAGE * pImage)

• void ParseImageI(char *arg, IMAGE * pImage)

• char ParseImagelI (char *arg, IMAGE default, IMAGE * pImage)

• void ParseImageLevel(LEVEL level, char *arg, IMAGE * pImage)

• char ParseImagelLevel (LEVEL level, char *arg, IMAGE default, IMAGE * pImage)

• void ParseImageILevel(LEVEL level, char *arg, IMAGE * pImage)

• char ParseImageILevel (LEVEL level, char *arg, IMAGE default, IMAGE * pImage)

The IMAGE type is defined in the file package/ signals/include/images.h. It corresponds
to a pointer to the structure struct image (or Image) which defines all the fields of a signal.
There should not be any use for you to handle directly a variable of type struct image,
you should only use variables of type IMAGE. The only fields of the image structure you
should know about are

50 CHAPTER 3. VALUE’S IN LASTWAVE

int nrow,ncol; /* the number of rows and columns of the image */

float *pixels; /* the 1d array with the pixel values. The pixel value corresponding to the column number c and row number r is stored in pixels[r*ncol+c] */

char *name; /* The name of the image. Should be set using the SetNameImage(IMAGE im, char *name) function only ! */

In order to allocate the pixels array you must use the SizeImage function. Its syntax
is

void SizeImage(IMAGE image, int ncols, int nrows)

It ensures that the pixels array has sufficient allocation to store an image whose number
of columns is ncols and number of rows nrows.

3.8.2 Functions for dealing with IMAGE’s

Basic functions are

• IMAGE NewImage(void): allocates an IMAGE

• IMAGE TNewImage(void): allocates a temporary IMAGE

• void DeleteImage(IMAGE ref): deletes an IMAGE reference (same as DeletValue(ref))

• void ClearImage(IMAGE image): inits all the fields of an IMAGE (including desallo-
cation of the pixels)

• void SizeImage(IMAGE image, int ncols, int nrows): ensures that the pixels
array has sufficient allocation to store an image whose number of columns is ncols

and number of rows nrows.

• void CopyImage(IMAGE in, IMAGE out): copies (all the fields including the values
in pixels) the image in to the image out

More advanced functions are

• float GetLpNormImage(IMAGE im, float p): returns the Lp norm of image

• float GetNthMomentImage(IMAGE image, int n, float *pNthMoment, int flagCentered):
returns in *pNthMoment the nth moment of the pixels values of the image. If
flagCentered is set the centered nth moment is computed. In any case the mean of
the image is returned.

• double ImageScalarProduct(IMAGE image1,IMAGE image2): returns the scalar prod-
uct of two images.

3.9. ABOUT NUMVALUE 51

3.8.3 i/o functions for IMAGE’s

For output

• void WriteImageStream(IMAGE image,STREAM s,char flagChar,float min, float

max, char flagHeader): writes the image image into the stream s. If flagHeader
is YES then a header is written. If flagChar is NO the pixel values are written using
float (binary) coding. If it is YES, each pixel is coded using a char, i.e., an integer
ranging in [0,255]. In that case if min<max then rescaling will be performed so that
the pixel value min is matched to 0 and the pixel value max is matched to 255. If
max>min, pixel values below 0 are set to 0 and pixel values above 255 are set to 255.

For input

• void ReadImageStream(IMAGE image ,STREAM s, char flagHeader,int nrow, int

ncol,char flagChar): reads an image from the stream s. If flagHeader is YES

then it means that the file has a header, otherwise nrow and ncol must be specified.
flagChar indicates wether the image is coded using binary float coding or char

coding.

3.9 About NUMVALUE

As we have already explained, numbers are represented internally as VALUE’s of type NUMVALUE.
The associated &type is &num (corresponding to the C static string numType). There is a
priori no reason for you to handle the corresponding structure since LastWave’s API lets
you address number values as simple float.
The NUMVALUE type is a pointer to a structure which basically has (apart from the fields
that are shared by all VALUE’s) a single field named f to store the corresponding value.

3.10 About STRVALUE

As we have already explained, strings are represented internally as VALUE’s of type STRVALUE.
The associated &type is &str (corresponding to the C static string strType). There is a
priori no reason for you to handle the corresponding structure since LastWave’s API lets
you address string values as simple char *.
The STRVALUE type is a pointer to a structure which basically has (apart from the fields
that are shared by all VALUE’s) a single field named str to store the corresponding value.

Warning: the field str must be allocated dynamically and must have an allocation size
greater than the constant MinStringSize

To set the string of a STRVALUE you should use the function

void SetStrValue(STRVALUE sc, char *str)

You can get the string using

char *GetStrFromStrValue(STRVALUE sc)

52 CHAPTER 3. VALUE’S IN LASTWAVE

and you can get the corresponding &list using

char **GetListFromStrValue(STRVALUE sc)

let us not that this latter function can generate an error if the string does not have a
valid list representation.

3.11 The null VALUE

The value null in LastWave corresponds to the C VALUE nullValue. The &type of this
value is &null and corresponds to the static string nullType. There is a single instance of
this value.

Chapter 4

Defining new tTYPE’s, new &type’s
and new VALUE’s

In this chapter we are going to explain how you can create a new type of VALUE with its
corresponding &type and tTYPE. For the sake of clarity, we will explain how to do it on a
simple example. To adapt this example to your own needs should be easy.

The CIRCLES example
Let us build a new type which corresponds to a list of circles. Each circle will be defined using
its position in the plane (abscissa and ordinate) and its radius. Moreover a positive number
(a weight) will be associated to each circle. All the codes that you will find below can be
found in the file user/src/circles.c. We are going to create a package named circle

that will contain all the corresponding definitions. In order this package to be available at
startup, you must declare it in the UserInit() function in the file user/src/user.c (the
corresponding lines are commented). Let us start!

4.1 The main structures - the &type

First of all you must define the structure that will correspond to the VALUE. In our example
it must be a list of circles. We first need to define what a circle is:

/* A single circle */

typedef struct circle {

float x;

float y;

float r;

} Circle;

We choose to define the list of circles as a simple (dynamically allocated) array. Since the
corresponding type must be a VALUE, we must include the VALUE fields, i.e.,

/* The CIRCLES VALUE */

typedef struct circles {

ValueFields; /* The fields of the VALUE structure */

53

54 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

Circle *array; /* The array of circles */

int n; /* The size of this array */

char *name; /* The name of the list */

} Circles, *CIRCLES;

We chose to associate a name to each of this VALUE (as for SIGNAL’s). This name will be
stored in the field name.
The so-defined CIRCLES structure corresponds to a VALUE (cast is thus possible). We must
define the corresponding &type and the associated static string

/* The corresponding &type */

static char *circlesType = "&circles";

4.2 The TypeStruct definition

To each VALUE type corresponds a TypeStruct. It stores all the information about this
VALUE, e.g., the methods new, delete, copy, . . . , the corresponding &type, the fields, . . . For
our type CIRCLES, the corresponding TypeStruct looks like

TypeStruct tsCircles = {

"{{{&circles} {A description of the type ’&circles’.}}}", /* Documentation */

&circlesType, /* The basic (unique) &type name */

NULL, /* The GetType function if several &types are associated (e.g., &signal, &signali) */

DeleteCircles, /* The Delete function */

NewCircles, /* The New function */

CopyCircles, /* The copy function */

ClearCircles, /* The clear function */

ToStrCircles, /* String conversion */

PrintCircles, /* The Print function : print the object when ’print’ is called */

PrintInfoCircles, /* The PrintInfo function : called by ’info’ */

NULL, /* The NumExtract function : used to deal with syntax like 10a */

fieldsCircles, /* The list of fields */

};

Before describing precisely the role of each of these fields let us see how the final declaration
of the new VALUE looks like

4.3. DEFINING A PACKAGE WITH A NEW VALUE AND TTY PES 55

4.3 Defining a package with a new VALUE and tTY PEs

As already explained (see Section 2.13), a package declaration is made in the following

void DeclareCirclesPackage(void)

{

DeclarePackage("circles",LoadCirclesPackage,2003,"1.0","E.Bacry",

"Demo package");

}

where the function DeclareCirclesPackage must be called in the UserInit function at
startup. this function is in the file user/src/user.c, it should look like

void UserInit(void)

{

extern void DeclareSignalPackage(void);

...

extern void DeclareCirclesPackage(void);

DeclareSignalPackage();

...

DeclareCirclesPackage();

}

When the package is loaded the function LoadCirclesPackage will be called. Thus this
function must define the new VALUE type CIRCLES and associate it to the TypeStruct

tsCircles and the &type circlesType. Moreover it must define the new tTYPES tCIRCLES

and tCIRCLES . This is simply done in the following way

int tCIRCLES, tCIRCLES_;

static void LoadCirclesPackage(void)

{

tCIRCLES = AddVariableTypeValue(circlesType, &tsCircles, NULL);

tCIRCLES_ = tCIRCLES+1;

}

(Let us note that no command will be defined in this package).

4.3.1 The AddVariableType... functions

For defining new VALUE’s you should always use the AddVariableTypeValue function as
shown above. Its full syntax is

int AddVariableTypeValue(char *type, TypeStruct *ts, char (*parse) (LEVEL level, char *, void *, void **))

where type is the &type static string, ts is the corresponding TypeStruct and the last
(optional) argument) is a parsing function that is called whenever the corresponding tTYPE

is parsed. By default it evaluates the argument and expect a value of type type. However,

56 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

if you want to be able to use some special syntax you can always bypass the default parsing
function.

If you want to define a new &type and new tTYPES associated to simple types such as float
you must use one of the functions

• int AddVariableTypeInt(char *type, char (*parse) (LEVEL level, char *, int,

int *))

• int AddVariableTypeFloat(char *type, char (*parse) (LEVEL level, char *,

float, float *))

• int AddVariableTypeStr(char *type, char (*parse) (LEVEL level, char *, char

*, char **))

In any case you must always specify the parsing function (it is no longer an optional argu-
ment). Thus for instance, if we want to define a new &type and the corresponding tTY PEs
for dealing with positive integers we would write

char ParsePosInt(LEVEL level, char *arg, int default, int *p)

{

if (ParseInt_(level,arg,default,p)==NO) return(NO);

if (*p < 0) {

SetErrorf("Expect a positive integer");

return(NO);

}

return(YES);

}

and at startup we would write

intpType = "&intp";

tINTP = AddVariableTypeInt(intpType, ParsePosInt);

tINTP_ = tINTP +1;

Let us note that this type will not correspond to a value type, i.e., it will treated
and stored as a regular number. However this definition allows you to use this
new type for type definition of C or script procedure arguments.

4.4 The &type and the documentation in the TypeStruct def-
inition

In Section 4.2 we have define the TypeStruct associated to CIRCLES. It started with the
lines

TypeStruct tsCircles = {

4.5. THE MAIN FUNCTIONS OF THE TYPESTRUCT 57

"{{{&circles} {A description of the type ’&circles’.}}}", /* Documentation */

&circlesType, /* The basic (unique) &type name */

NULL, /* The GetType function if several &types are associated (e.g., &signal, &signali) */

...

We shall start to explain the last line If NULL is put then itmeans that this VALUE corresponds
to a single basic &type that is specified just above (in our case &circlesType). If it is not
NULL it mus be a function that takes a single argument of type CIRCLES and that returns
a static string which must corresponds to its &type. This is, for instance, how the types
&signal and &signali are implemented for signals. Both &types correspond to SIGNAL

but the type depends whether the signal is empty or not. In any case you must always
specify a basic &type on the second line. For SIGNALs the basic &type is &signal.
The first line is a string that gives description of each of the &types. If the third line is
NULL there is a single &type. The general syntax for this help is

"{{{&type1} {description of &type1}} ... {{&typeN} {description of &typeN}}}"

4.5 The main functions of the TypeStruct

4.5.1 The New function

This function is used for allocation. In our case it is

CIRCLES NewCircles(void)

{

CIRCLES c;

extern TypeStruct tsCircles;

c = Malloc(sizeof(Circles));

InitValue(c,&tsCircles);

c->array = NULL;

c->n = 0;

c->name = CopyStr("");

return(c);

}

It must return a pointer to a dynamically allocated structure of the corresponding VALUE

type. Moreover this structure must be initialized using the InitValue(VALUE,TypeStruct

*) function. Of course, this function must also performs your own initialization of the
structure. In our case in includes allocating a string for the name field. When it is created
the name is set to the empty string.

4.5.2 The Delete function

This function is called for delting a reference to th VALUE. In our case, it is

58 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

void DeleteCircles(CIRCLES c)

{

RemoveRefValue(c);

if (c->nRef > 0) return;

if (c->n != 0) Free(c->array);

if (c->name) Free(c->name);

Free(c);

}

This function must start by decreasing the reference counter by 1 and testing if it reached
0 or not. If it did not then it just returns. Otherwise it means that the corresponding
structure must be desallocated.

4.5.3 The Clear function

This function is called when th clear command is called. It must “clear” the structure
corresponding to the VALUE. In our case, we will just erase all the circles, i.e.,

void ClearCircles(CIRCLES c)

{

if (c->n != 0) {

Free(c->array);

c->array = NULL;

c->n = 0;

}

}

4.5.4 The Copy function

This function is called whenever the copy command is called. It takes two arguments. The
first one if the VALUE to be copied. If the second one is NULL the function must allocate and
return a copy of the VALUE. If not the secong one is a VALUE that you must use to put the
copy in and finally return it. In our case it is

CIRCLES CopyCircles(CIRCLES in, CIRCLES out)

{

if (out == NULL) out = NewCircles();

ClearCircles(out);

out->array = Malloc(sizeof(Circles)*in->n);

out->n = in->n;

memcpy(out->array,in->array,sizeof(Circles)*in->n);

return(out);

}

4.5. THE MAIN FUNCTIONS OF THE TYPESTRUCT 59

4.5.5 The ToStr function

This function takes two arguments, the first one is the VALUE to be converted to a (static)
string and the second one is a flag. If it set to YES it means that the string should be short
(it will be used to display the VALUE when in a listv) if not the so obtained string will be
used to display the VALUE when returned by a command as a result value. In our case:

char *ToStrCircles(CIRCLES c, char flagShort)

{

static char str[30];

if (!strcmp(c->name,"")) {

sprintf(str,"<&circles[%d];%p>",c->n,c);

}

else if (strlen(c->name) < 15) {

sprintf(str,"<&circles[%d];%s>",c->n,c->name);

}

else {

sprintf(str,"<&circles[%d];...>",c->n);

}

return(str);

}

4.5.6 The Print function

This function is called whenever the print command is called. it should print extensively
the VALUE. In our case:

void PrintCircles(CIRCLES c)

{

int i;

if (c->n == 0) Printf("<empty>\n");

else {

for (i=0;i<c->n;i++)

Printf("%d : x=%g, y=%g, r= %g\n",i,c->array[i].x,c->array[i].y,c->array[i].r);

}

}

4.5.7 The PrintInfo function

This function is called whenever the info command is called. it should print information
on the VALUE. In our case:

void PrintInfoCircles(CIRCLES c)

{

Printf(" name : %s\n",c->name);

Printf(" number of circles : %d\n",c->n);

}

60 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

4.6 The NumExtract function

This function is used to interpret 10a like syntax where a is a VALUE of our type. In the
case of CIRCLES we did not allow such a syntax. This is why we set this function to NULL.
However we could have decided not to. In the case pf &wtrans (i.e., 1d wavelet transform
structure defined in the package wtrans1d) this function is

static char *numdoc = "The syntax <ij> corresponds to A[i,j] and the syntax <.ij> corresponds to D[i,j]";

static void *NumExtractWtrans(WTRANS val,void **arg)

{

VALUE *pValue;

int n;

char flagDot;

int v;

int o;

/* doc */

if (val == NULL) return(numdoc);

n = ARG_NE_GetN(arg);

flagDot = ARG_NE_GetFlagDot(arg);

v = n%10;

o = n/10;

if (o < 0 || o >= NOCT) {

SetErrorf("Octave index ’%d’ out of range : should be in [0,%d]",o,NOCT-1);

return(NULL);

}

if (v < 0 || v >= NVOICE) {

SetErrorf("Voice index ’%d’ out of range : should be in [0,%d]",v,NVOICE-1);

return(NULL);

}

if (flagDot) ARG_NE_SetResValue(arg,val->D[o][v]);

else ARG_NE_SetResValue(arg,val->A[o][v]);

return(signalType);

}

If the first argument (i.e., the VALUE) is NULL it must return a one-line help on the syntax.
Otherwise, you can obtain the number (in front of the a) using the ARG NE GetN macro and
the flag flagDot using the macro ARG NE GetFlagDot (it is YES in the case a dot is used
atthe begining, e.g., .10a). The result must be a VALUE that is stored using the macro
ARG NE SetResValue, moreover it must return its corresponding &type.

If you want to generate an error you must not use the Errorf function. You must
return NULL and sets the error message before (using the SetErrorf function).

4.7. MANAGING FIELDS : AN INTRODUCTION 61

4.7 Managing fields : an introduction

The last line of the TypeStruct (see Section 4.2) must be an array of field’s decalration.
In our case this array is in the variable fieldsCircles. A field declaration looks like

"name", Get, Set, GetExtractOption, GetExtractInfo

where name is the name of the field, Get the function that allows to get the value of
the field, Set the function that allows to set the value of the field, GetExtractOption the
function that allows to manage *options in extractions and GetExtractInfo the function
that manages getting some information about extractions on this field (e.g., signal.X[1,2]
is an extraction the VALUE signal and with the field X). If no extraction is possible with
this field then both GetExtractOption and GetExtractInfo must be NULL. Moreover if
the name of the field is the empty string it corresponds to extraction on the VALUE itself
(i.e., signal[2,3]).

Let us note that if a Set function is set to NULL then the field is read-only. Moreover,
when no extraction function (GetExtractOption and GetExtractInfo) is specified for a
field, it does not mean that no extraction is available for this field. It just means that
the extraction on this field will not be managed by this VALUE. In case extraction of the
type c.f[1,2] is performed, LastWave first starts by getting the VALUE corresponding to c

then it asks if this VALUE knows about extraction on a field named f, if it does then it asks
this VALUE to process it. If it does not, then it asks the VALUE c to return the value for the
field f. The returned VALUE is then asked to perform the extraction. This behavior allows
you to choose whether you want the fields of the VALUE you define to handle extraction
themselves or to bypass their handling.

In our case the array of fields’ declaration is

struct field fieldsCircles[] = {

"", GetExtractCirclesV, SetExtractCirclesV, GetExtractOptionsCirclesV, GetExtractInfoCirclesV,

"r", GetRCirclesV, SetRCirclesV, GetExtractOptionsRXYCirclesV, GetExtractInfoRXYCirclesV,

"x", GetXCirclesV, SetXCirclesV, GetExtractOptionsRXYCirclesV, GetExtractInfoRXYCirclesV,

"y", GetYCirclesV, SetYCirclesV, GetExtractOptionsRXYCirclesV, GetExtractInfoRXYCirclesV,

"name", GetNameCirclesV, SetNameCirclesV, NULL, NULL,

"n", GetNCirclesV, SetNCirclesV, NULL, NULL,

NULL, NULL, NULL, NULL, NULL

};

We shall first describe fields which do not deal with extractions (the fields n and names)

4.8 Managing fields (no extraction)

Both the Get and the Set functions must return a documentation string if the VALUE that
is the first argument is NULL. In, LastWave, several functions let you manage standard type
fields very easily. For instance, the function that gets the field n (an integer) is just

62 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

static char *nDoc = "{[= <n>]} {Sets/Gets the number of circles of a circles object}";

static void * GetNCirclesV(CIRCLES c, void **arg)

{

/* Documentation */

if (c == NULL) return(nDoc);

return(GetIntField(c->n,arg));

}

The function GetIntField(int n, void **arg) allows to return the integer n as the value
of the field.
The function that allows to set this field is

static void * SetNCirclesV(CIRCLES c, void **arg)

{

int n,i;

/* doc */

if (c == NULL) return(nDoc);

n = c->n;

if (SetIntField(&n,arg,FieldSPositive)==NULL) return(NULL);

if (n<c->n) c->n = n;

else {

ClearCircles(c);

c->array = Malloc(sizeof(Circles)*n);

c->n = n;

for (i= 0;i<n;i++) {

c->array[i].x = 0;

c->array[i].y = 0;

c->array[i].r = 0;

}

}

return(numType);

}

It is a little more complicated. However you must be aware that this function lets you deal
with pretty complex syntaxes such as c.n+=3. In order to do so it uses the SetIntField(int
*p, void **arg, char flag) function. This function must be called with a pointer to
the field value as the first argument (if it is an integer of course), the arg argument as the
second argument and a flag argument that is one of FieldPositive, FieldSPositive,
FieldNegative or FieldSNegative. It manages setting the field using the constraint given
by the flag (FieldSPositive indicates that the integer must be a strictly positive integer).
Let us note that in our case we need to remember the old value of the field since it tells you

4.9. MANAGING EXTRACTION (NO FIELD) 63

what the allocation size of the array is. This is why we used another variable n and called
the SetIntField function on &n instead of &c->n. The SetIntField function returns NULL
if an error occurred.

In the case the field is a string (this is the case of the name field), the functions basically
follow the same logic except that the GetIntField and SetIntField functions are replaced
by the GetStrField and SetStrField functions:

static char *nameDoc = "{[= <name>]} {Sets/Gets the name of a circles}";

static void * GetNameCirclesV(CIRCLES c, void **arg)

{

/* Documentation */

if (c == NULL) return(nameDoc);

return(GetStrField(c->name,arg));

}

and

static void * SetNameCirclesV(CIRCLES c, void **arg)

{

/* doc */

if (c == NULL) return(nameDoc);

return(SetStrField(&(c->name),arg));

}

Let us note that this shows you a case of a field which extraction is not handled by the VALUE
but directly by the field itself. Indeed, though you did not specify any extraction behavior,
you can use syntax such as s = c.name[*no,2:39] or c.name[1:2] := "e". They are
handled by the TypeStruct associated to the string VALUE (i.e., STRVALUE).

You can learn about all the available Get...Field and Set..Field functions by
reading Section 4.11

4.9 Managing extraction (no field)

This is the case when you type something like c[1:3] where c is a &circles. No field
is specified. Extraction is directly performed on the VALUE itself. In the array of field
declaration fieldsCircles, it corresponds to the firs line, i.e., where the field name is
the empty string.

4.9.1 The GetExtractOption function

The GetExtractOption allows you to specify what the *options are in case of a get. Even
if there are no *options this function must not be set to NULL. This function must
return a (NULL terminated) list of strings corresponding to the *options. In the case the
VALUE is NULL it must return a documentation on these *options. In our case, we only

64 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

want to deal with the *nolimit option which allows to usie out of range indices. The
GetExtractOptionsCirclesV looks like

static char *optionDoc = "{{*nolimit} {*nolimit : indexes can be out of range}}";

static char *extractOptionsCircles[] = {"*nolimit",NULL};

enum {

FSIOptCirclesNoLimit = FSIOption1

};

static void *GetExtractOptionsCirclesV(CIRCLES c, void **arg)

{

/* doc */

if (c == NULL) return(optionDoc);

return(extractOptionsCircles);

}

Let us note that in the case of several *option’s the documentation syntax would be

"{{*option1} {doc of option1}} ... {{*optionN} {doc of optionN}}"

Moreover, we define enum values for each of the options. As we will see this will be
more practical. After dealing with eventual *option’s, LastWave will call the ExtractInfo
function.

4.9.2 The ExtractInfo function - the ExtractInfo structure

This function is called before the list of indices is read. It asks for a information about how
the extraction indices should look like. If the VALUE happens to be such that no extraction is
possible (e.g., an empty signal) you must return NULL after setting the error message using
the SetErrorf function (no error interruption must be made in this function). In any other
case the function must return a pointer to a structure of type ExtractInfo that contains
the required information. Some of the information does not depend on the VALUE (this is
the case generally of the minimum allowed index) so for efficiency purpose, we use a static
ExtractInfo variable and when the function ExtractInfo is first called we initialize it. In
the next calls, only the part of this structure that depends on the VALUE will be changed.
In our case it gives

static void *GetExtractInfoCirclesV(CIRCLES c, void **arg)

{

static ExtractInfo extractInfo;

static char flagInit = YES;

unsigned long *options = ARG_EI_GetPOptions(arg);

if (flagInit == YES) {

extractInfo.nSignals = 1;

4.9. MANAGING EXTRACTION (NO FIELD) 65

extractInfo.xmin = 0;

extractInfo.dx = 1;

}

if (c->n == 0) {

SetErrorf("No extraction possible on empty list of circles");

return(NULL);

}

extractInfo.xmax = c->n-1;

extractInfo.flags = EIIntIndex;

if (!(*options & FSIOptCirclesNoLimit)) extractInfo.flags |= EIErrorBound;

return(&extractInfo);

}

The macro ARG EI GetPOptions allows to get obtain the flag that corresponds to the
*options’s that are on (using the enum of the last section). The fields of the ExtractInfo

structure that must be filled in are

• unsigned char nSignals: 1 or 2 depending on whether one or two (; separated) list
of extraction indices are expected.

• char flags: a combination of EIIntIndex and/or EIErrorBound. If you set EIIntIndex
it means that the indices are expected to be integers (error will be automatically gen-
erated if not the case) and if you set EIErrorBound it means that an error is generated
if the indices are out of range (cf below)

• float xmin,xmax,dx: the range of the indices. If xmax<xmin then this range is not
active. Otherwise the indices must be in the range [xmin,xmax] and a multiple of dx.
Actually this range is the range for the first list of indices only (in case nSignals is
equal to 2)

• float ymin,ymax,dy: same as float xmin,xmax,dx except that it applies on the
second list of ranges.

In our case the indices must be integers (flag EIIntIndex is set) they must be in the range
[0,n-1] where n is the number of circles. An out of range error must be generated (i.e.,
the flag EIErrorBound must be set) only if the *option *nolimit is not set.

4.9.3 The GetExtract function - The FSIList structure

Now we are ready for extraction. The list of indices is stored in a structure called an FSIList

structure. Let us note that a list of indices can be composed of numbers, signals, ranges,
images. . . The FSIList structure is used to code all this information without duplicating
anything (for efficiency purposes a range, for instance, is not transformed into a signal).
Though it means that it is very efficient, it makes the access to the structure a little trickier.
However, most of the times, you will not have to access this structure directly. There are

66 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

several macros that let you deal wit this structure. The fields of this structure you must
know about are

• char flagImage: YES if two (; separated) list of indices are specified

• int nx: the total number of indices of the first list

• int ny: the total number of indices of the second list

• int nx1: the total number of indices of the first list which are not out of range

• int ny1: the total number of indices of the second list which are not out of range

• unsigend long options: the *option’s which are on (using the enum coding)

The main macros you should know about are

• FSI FIRST(list): returns the first index (you must first check there is at least 1
index)

• FSI SECOND(list): returns the second index (you must first check there are at least
2 indices)

• FSI FOR START(list) and FSI FOR END: these macros allow you to loop on the indices.
In order to use them you must make the declaration FSI DECL; along the variable
declaration. It works as a for loop. The syntax is

FSI DECL;

...

FSI FOR START(list)

...

FSI FOR END

In between the two calls some variables can be used

– f: the current (float) index

– i: corresponds to the integer part of f

– k: the current index is the kth index

You can go out of the loop at any moment using the macro FSI BREAK

The GetExtract function must return the extracted result in a pointer variable and it must
return its corresponding &type. If NULL is returned then it means than an error occurred
and that the error message was set (no error interruption are allowed). If the input VALUE
is NULL it must return a string documentation. In our case of extraction on CIRCLES we
want this function to return a new CIRCLES value with the corresponding circles only. In
the case the *nolimit option is set only indices which are not out of range are taken into
account. Thus we write

4.9. MANAGING EXTRACTION (NO FIELD) 67

static char *doc = "{[*nolimit,...] [:]= list of <x,y,r>} {Get/Set the circle values}";

static void *GetExtractCirclesV(CIRCLES c, void **arg)

{

FSIList *fsiList;

VALUE *pValue;

CIRCLES c1;

FSI_DECL;

/* doc */

if (c == NULL) return(doc);

fsiList = ARG_G_GetFsiList(arg);

c1 = NewCircles();

TempValue(c1);

ARG_G_SetResValue(arg,c1);

if (fsiList->nx1 == 0) return(circlesType);

c1->array = Malloc(sizeof(Circle)*fsiList->nx1);

c1->n = fsiList->nx1;

FSI_FOR_START(fsiList);

if (fsiList->options & FSIOptCirclesNoLimit && (_i<0 || _i >= c->n)) continue;

memcpy(&(c1->array[_k]),&(c->array[_i]),sizeof(Circle));

FSI_FOR_END;

return(circlesType);

}

The macro ARG G GetFsiList allows to get the FSIList structure and the macro ARG G SetResValue

allows to set the variable that must contain the result VALUE at return time (you could use
the ARG G GetResPValue(arg) to get a pointer to this variable). Let us note that if you want
to return a float or a string you can use directly the macros ARG G SetResFloat(arg,flt)

(or ARG G GetResPFloat(arg) to get the pointer) or ARG G SetResStr(arg,str) (or ARG G GetResPStr(arg)

to get the pointer). They avoid creating NUMVALUE or STRVALUE structure and consequently
are more efficient.

4.9.4 The SetExtract function

We are now ready to use extraction for setting values. As for the other functions, if a
NULL VALUE is passed as an argument the function should return a string documentation.
Moreover, as for the GetExtract function (see previous Section), the list of indices will be
coded using the FSIList structure. For our example, for the sake of simplicity, we will
allow only two extraction syntaxes for CIRCLES, the first one

c[list of indices] := {}

68 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

should delete each circle which corresponds to one of the index (in that case, the list of
indices must be made of strictly increasing indidces) and the second one

c[list of indices] = listv of <x y r>

in which the list of indices must have the same length as the listv on the right handside.
The corresponding function is the following

static void *SetExtractCirclesV(CIRCLES c,void **arg)

{

FSIList *fsiList = (FSIList *) ARG_S_GetFsiList(arg);

char *equal = ARG_S_GetEqual(arg);

VALUE val = ARG_S_GetRightValue(arg);

char *type = ARG_S_GetRightType(arg);

LISTV lv;

FSI_DECL;

float f;

SIGNAL sig;

int _iold, i;

/* doc */

if (c == NULL) return(doc);

/* The right handside value must be a listv */

if (type != listvType) {

SetErrorf("Right hand side of assignation should be a &listv");

return(NULL);

}

/* Cast the right handside value to a listv */

lv = CastValue(val,LISTV);

/*********************************

*

* Case the assignation is of the form c[fsilist] := {}

*

*********************************/

if (*equal == ’:’) {

/* If (right handside) listv is not empty --> error */

if (lv->length != 0) {

SetErrorf("With := syntax, right handside should be an empty listv");

return(NULL);

}

/* Testing the indices of the FSIlist are strictly increasing */

4.9. MANAGING EXTRACTION (NO FIELD) 69

_iold = -1;

FSI_FOR_START(fsiList);

if (_i <= _iold) {

SetErrorf("Indices should be strictly increasing");

return(NULL);

}

_iold = _i;

FSI_FOR_END;

/* Let’s perform assignation : let’s remove the corresponding circles ! */

_iold = -1;

i = 0;

FSI_FOR_START(fsiList);

if (_i == 0) {

_iold = 0;

continue;

}

else if (_iold == -1) {

i = _i;

_iold = _i;

continue;

}

if (_i == _iold+1) {

_iold = _i;

continue;

}

memmove(&(c->array[i]),&(c->array[_iold+1]),(_i-_iold-1)*sizeof(Circle));

i+=_i-_iold-1;

_iold = _i;

FSI_FOR_END;

if (_i != c->n-1) {

memmove(&(c->array[i]),&(c->array[_iold+1]),(c->n-1-_iold)*sizeof(Circle));

}

c->n -= fsiList->nx;

/* we return the same structure CIRCLES (which has been modified) */

ARG_S_SetResValue(arg,c);

return(circlesType);

}

/*********************************

*

* Case the equal sign is one of +=, -=, *=, /=, ^= --> ERROR

*

70 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

*********************************/

if (*equal != ’=’) {

SetErrorf("%s syntaxnot valid",equal);

return(NULL);

}

/*********************************

*

* Case the assignation is of the form c[fsilist] = listv of signals of size 3 (<x,y,r>)

*

*********************************/

/* The number of indices must be the same as the number of signals */

if (lv->length != fsiList->nx) {

SetErrorf("Right and left handside should have the same size");

return(NULL);

}

/* Let’s loop on the indices */

FSI_FOR_START(fsiList);

GetListvNth(lv,_k,&val,&f);

/* We only expect non empty signals in the listv */

if (val == NULL || GetTypeValue(val) != signaliType) {

SetErrorf("Expect a listv of non empty signals on right handside");

return(NULL);

}

sig = CastValue(val,SIGNAL);

/* signals that must be of size 3 */

if (sig->size != 3) {

SetErrorf("Expect a listv of signals of length 3 on right handside");

return(NULL);

}

/* and with positive radius */

if (sig->Y[2] < 0) {

SetErrorf("Radius must be positive");

return(NULL);

}

/* Let’s perform the assignation */

c->array[_i].x = sig->Y[0];

c->array[_i].y = sig->Y[1];

c->array[_i].r = sig->Y[2];

4.10. MANAGING EXTRACTION WITH FIELD 71

/* end of loop */

FSI_FOR_END;

/* we return the same structure CIRCLES (after modification)

ARG_S_SetResValue(arg,c);

return(circlesType);

}

Let us note that the equal sign that is used for assignation (=, +=, :=, . . .) is ob-
tained using the macro ARG S GetEqual. The right handside type value is obtained using
ARG S GetRightType. If it is a float, it is obtained using ARG S GetRightFloat otherwise
it corresponds to a value that is obtained using ARG S GetRightValue.

4.10 Managing extraction with field

In this section we explain how to make LastWave understand a syntax like

c.x[1,2] = <0,0>

where c is a CIRCLES. Since the field x is implemented using an array of float (which is not
a VALUE) there is no way the extraction of the field can be handled by the field itself. It
must be directly handled by c.

The extraction system with a field works exactly the same way as the ex-
traction system with no field (read Section 4.9) except that, if you need it you
can get the name of the field using the macros ARG G GetField (for the get functions),
ARG S GetField (for the set functions), ARG EI GetField (for the GetExtractInfo func-
tions) and ARG EO GetField (for the GetExtractOptions functions).

In our case, we want to manage extraction of fields x, y and r. Since the functions will look
alike, all the functions will call the same basic functions.

4.10.1 The GetExtractOption function

We use the same functions for the three fields. Since there is no *option the function must
return a single element array with NULL, i.e.,

static void *GetExtractOptionsRXYCirclesV(CIRCLES c, void **arg)

{

static char *gextractOptionsCircles[] = {NULL};

return(gextractOptionsCircles);

}

4.10.2 The GetExtractInfo function

A single function is used again

72 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

static void *GetExtractInfoRXYCirclesV(CIRCLES c, void **arg)

{

static ExtractInfo extractInfo;

static char flagInit = YES;

unsigned long *options = ARG_EI_GetPOptions(arg);

if (flagInit == YES) {

extractInfo.nSignals = 1;

extractInfo.xmin = 0;

extractInfo.dx = 1;

extractInfo.flags = EIIntIndex | EIErrorBound;

}

if (c->n == 0) {

SetErrorf("No extraction possible on empty list of circles");

return(NULL);

}

extractInfo.xmax = c->n-1;

return(&extractInfo);

}

4.10.3 The GetExtract functions

We start with the generic function (flag is either ’x’, ’y’ or ’r’ depending on the field
which is treated). For the sake of simplicity, in order to handle the get we build the
corresponding signal (made only of the abscissa, ordinates or radii) and we call the get of
the signal type. Since this get function knows how to handle signal fields, we first must
set the field (which is a CIRCLES field not a SIGNAL field) to NULL. This is done using the
ARG G SetField macro. Since the resulting extracted signal could have an x0 field different
from 0 or a dx field different from 1, we set these two fields.

static void * GetRXYCirclesV(CIRCLES c, void **arg, char flag)

{

SIGNAL sig;

int i;

void *res;

sig = TNewSignal();

if (c->n != 0) SizeSignal(sig,c->n,YSIG);

switch(flag) {

case ’r’ : for (i=0;i<c->n;i++) sig->Y[i] = c->array[i].r; break;

case ’x’ : for (i=0;i<c->n;i++) sig->Y[i] = c->array[i].x; break;

case ’y’ : for (i=0;i<c->n;i++) sig->Y[i] = c->array[i].y; break;

}

4.10. MANAGING EXTRACTION WITH FIELD 73

ARG_G_SetField(arg,NULL);

res = GetSignalExtractField(sig,arg);

if (res == NULL) return;

if (res == signaliType) {

sig = *((SIGNAL *) ARG_G_GetResPValue(arg));

sig->dx = 1;

sig->x0 = 0;

}

}

The specific function for the r field is really simple

static char *rDoc = "{[[+-*/:]= (<signal> | <range>])} {Sets/Gets the radii}";

static void * GetRCirclesV(CIRCLES c, void **arg)

{

if (c == NULL) return(rDoc);

return(GetRXYCirclesV(c,arg,’r’));

}

and so are the other ones

static char *xDoc = "{[[+-*/:]= (<signal> | <range>])} {Sets/Gets the abscissa}";

static void * GetXCirclesV(CIRCLES c, void **arg)

{

if (c == NULL) return(xDoc);

return(GetRXYCirclesV(c,arg,’x’));

}

static char *yDoc = "{[[+-*/:]= (<signal> | <range>])} {Sets/Gets the ordinates}";

static void * GetYCirclesV(CIRCLES c, void **arg)

{

if (c == NULL) return(yDoc);

return(GetRXYCirclesV(c,arg,’y’));

}

4.10.4 The SetExtract functions

In the same way as for the get function, we start writing a generic function. Again,
for the sake of simplicity, we will build SIGNALs and call the corresponding set function
(i.e., the function SetSignalField (you can learn about all the available Get...Field and
Set..Field functions by reading Section 4.11). However, we have to be careful that the
syntax for signals let you change the size of the signal (e.g. s[1:2]:=0), so we shall not
allow this type of syntax. This will simply be done by checking that after call the set

function for SIGNALs the resulting signal has the same size as the original signal.

static void * SetRXYCirclesV(CIRCLES c, void **arg, char flag)

{

SIGNAL sig;

74 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

int i;

void *res;

sig = TNewSignal();

if (c->n != 0) SizeSignal(sig,c->n,YSIG);

switch(flag) {

case ’r’ : for (i=0;i<c->n;i++) sig->Y[i] = c->array[i].r; break;

case ’x’ : for (i=0;i<c->n;i++) sig->Y[i] = c->array[i].x; break;

case ’y’ : for (i=0;i<c->n;i++) sig->Y[i] = c->array[i].y; break;

}

if ((res = SetSignalField(sig,arg)) == NULL) return(NULL);

if (sig->size != c->n) {

SetErrorf("Sorry, right handside should have the same size as left handside");

return(NULL);

}

if (flag == ’r’) {

for (i=0;i<c->n;i++) {

if (sig->Y[i]<0) {

SetErrorf("Sorry, radii should be positive");

return(NULL);

}

}

}

switch(flag) {

case ’r’ : for (i=0;i<c->n;i++) c->array[i].r = sig->Y[i]; break;

case ’x’ : for (i=0;i<c->n;i++) c->array[i].x = sig->Y[i]; break;

case ’y’ : for (i=0;i<c->n;i++) c->array[i].y = sig->Y[i]; break;

}

return(res);

}

The specific functions are then very simple

static void * SetRCirclesV(CIRCLES c, void **arg)

{

if (c == NULL) return(rDoc);

return(SetRXYCirclesV(c,arg,’r’));

}

static void * SetXCirclesV(CIRCLES c, void **arg)

{

4.11. THE GET...FIELD AND THE SET...FIELD FUNCTIONS 75

if (c == NULL) return(xDoc);

return(SetRXYCirclesV(c,arg,’x’));

}

and

static void * SetYCirclesV(CIRCLES c, void **arg)

{

if (c == NULL) return(yDoc);

return(SetRXYCirclesV(c,arg,’y’));

}

4.11 The Get...Field and the Set...Field functions

4.11.1 The Get...Field functions

As we have seen the Get...Field functions can be used to avoid handling directly with the
get system. The extensive list of these functions are

• void *GetIntField(int i, void **arg): gets the field which corresponds to the
integer i

• void *GetFloatField(float f, void **arg): gets the field which corresponds to
the float f

• void *GetStrField(char *str, void **arg): gets the field which corresponds to
the string str. This function does not manage extraction (both the FSIList and the
field are set to NULL).

• void *GetValueField(VALUE val, void **arg): gets the field which corresponds
to the VALUE val. This function does not manage extraction (both the FSIList and
the field are set to NULL).

• void * GetStrFieldExtract(char *str, void **arg): gets the field which corre-
sponds to the string str. This function manages extraction (however the field is set
to NULL).

• void *GetSignalExtractField(SIGNAL sig, void **arg): gets the field which cor-
responds to the SIGNAL sig. This function manages extraction (however the field is
set to NULL).

• void *GetImageExtractField(IMAGE im, void **arg): gets the field which corre-
sponds to the IMAGE im. This function manages extraction (however the field is set
to NULL).

4.11.2 The Set...Field functions

As we have seen the Set...Field functions can be used to avoid handling directly with the
set system. The extensive list of these functions are

76 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

• void *SetIntField(int *pint, void **arg,char flag): sets the field which cor-
responds to the integer pointed by pi. The flag is one of FieldPositive (result
must be positive), FieldSPositive (result must be strictly positive), FieldNegative
(result must be negative), FieldSNegative (result must be strictly negative).

• void *SetFloatField(float *pflt, void **arg,char flag): sets the field which
corresponds to the float pointed by pflt. The flag is one of FieldPositive (result
must be positive), FieldSPositive (result must be strictly positive), FieldNegative
(result must be negative), FieldSNegative (result must be strictly negative).

• void *SetStrField(char **pstr, void **arg): sets the field which corresponds
to the string pointed by pstr. This function manages extraction (however the field

is set to NULL)

• void *SetListvField(LISTV *plv,void **arg): sets the field which corresponds
to the listv pointed by plv. This function manages extraction (however the field is
set to NULL)

• void *SetSignalField(SIGNAL sig,void **arg): sets the field which corresponds
to the SIGNAL sig. This function manages extraction (however the field is set to
NULL)

• void *SetImageField(IMAGE im,void **arg): sets the field which corresponds to
the IMAGE im. This function manages extraction (however the field is set to NULL)

4.12 Playing around with CIRCLES

This is it! Your package is ready (do not forget to include the file circles.c in the FileList
file in the directory user/obj (as explained in Section 2.1). Just type make in the Makefiles
directory to recompile LastWave and start it up!
This is an example of what you can do with the circles package

> package load ’circles’

> c = [new &circles]

= <&circles[0];0x090fe300>

> c.n=10

= 10

> c

= <&circles[10];0x090fe300>

> c.r = abs(Grand(10))

= <size=10;0.287257,0.0415209,1.28227,0.0587326,0.189727,1.18633,...>

> c.x = 0:9

= <size=10;0,1,2,3,4,5,...>

> c.y = 2*c.x

= <size=10;0,2,4,6,8,10,...>

> c.r[3:5]

= <0.0587326,0.189727,1.18633>

> c.r[3:5] := 8

4.12. PLAYING AROUND WITH CIRCLES 77

= <size=10;0.287257,0.0415209,1.28227,8,8,8,...>

> print c

c =

0 : x=0, y=0, r= 0.287257

1 : x=1, y=2, r= 0.0415209

2 : x=2, y=4, r= 1.28227

3 : x=3, y=6, r= 8

4 : x=4, y=8, r= 8

5 : x=5, y=10, r= 8

6 : x=6, y=12, r= 0.0458967

7 : x=7, y=14, r= 1.49387

8 : x=8, y=16, r= 1.37574

9 : x=9, y=18, r= 0.20473

> find(c.r>1)

= <size=6;2,3,4,5,7,8>

> c[find(c.r>1)] := {}

= <&circles[4];0x091b3ab0>

> print c

c =

0 : x=0, y=0, r= 0.287257

1 : x=1, y=2, r= 0.0415209

2 : x=6, y=12, r= 0.0458967

3 : x=9, y=18, r= 0.20473

78 CHAPTER 4. DEFINING NEW TTYPE’S, NEW &TY PE’S AND NEW VALUE’S

Chapter 5

Managing graphics

5.1 Graphic objects

5.1.1 The GOBJECT structure

We have already seen that values in LastWave “inherit” from the type VALUE. By “inherit”
we meant that all the C-structures that are used to represent values have a common header,
i.e., they start with the same fields. This set of common fields are grouped into the Value

structure. The type VALUE is the type which corresponds to a pointer to a Value structure.
Exactly in the same way, all the graphic objects inherit from the type GOBJECT which
corresponds to a pointer to the structure Gobject. The fields of Gobject you should know
about are the following

• GCLASS gclass: a pointer to the graphic class it belongs to (read next section)

• GLIST father: the graphic list it belongs to (if any)

• char flagHide: YES if object is not visible

• int x, y, w, h: the absolute position/size in the window coordinates

• float rx, ry, rw, rh: the relative position/size in the graphic list coordinates

• RectType rectType: where RectType is a structure with the 4 (short) fields: left,
top, right and bottom. Each time the absolute position is computed from the relative
position, the so-obtained rectangle is enlarged/reduced on each side using these 4
numbers. There are 3 predefined RectTypes:

– NormalRect = {0,0,0,0} (default value): the point (x,y) belongs to the object
whereas the point (x+w,y+h) does not belong to the object

– LargeRect = {0,0,1,1}: both the points (x,y) and (x+w,y+h) belong to the
object

– SmallRect = {-1,-1,0,0}: neither the point (x,y) nor the point (x+w,y+h)

belong to the object

• unsigned char flagClip: the possible values are

79

80 CHAPTER 5. MANAGING GRAPHICS

– 0: the object is not clipped

– 1: the object is clipped using the rectangle x,y,w,h

– 2: the object is clipped using the rectangle x,y,w,h only when displayed on the
screen. It is not clipped when a postscript file is generated.

• char flagGrid: YES if the object is positionned/sized on a grid

• unsigned char i,j,m,n: position/size (relative to grid coordinates) if flagGrid is
set.

• FONT font: font of the object

• unsigned long fgColor, bgColor: foreground and background colors

• unsigned char penSize: size of the pen

• unsigned char penMode: mode of the pen (either PenPlain or PenInverse)

• unsigned char lineStyle: style of line (either LinePlain or LineDash)

• unsigned char flagFrame: YES if object is framed

5.1.2 Parsing graphic objects: tGOBJECT, tGOBJECT , tGOBJECTLIST and tGOBJECTLIST

In order to write a command that uses a graphic object, you need to be able to parse such
a graphic object. This can be done using the ParseArgv function along with tth tTYPES,
tGOBJECT or tGOBJECT . You can also use directly one of the parsing functions

• void ParseGObject(char *arg, GOBJECT *obj)

• char ParseGObject (char *arg, GOBJECT def, GOBJECT *obj)

Let us note that this does not allow you to parse a list of graphic objects (as most of the
commands dealing on graphic objects do, indeed, for instance you canuse wild cards). A
list of graphic objects is simply represented in C using a NULL terminated array of GOBJECT.
You can parse such a list using the tTYPES tGOBJECTLIST or tGOBJECTLIST or directly
using the parsing functions:

• void ParseGObjectList(char *arg, GOBJECT **objlist)

• char ParseGObjectList (char *arg, GOBJECT *def, GOBJECT **objlist)

5.1.3 Functions that deal with local/global coordinates

• void Local2Global(GOBJECT o,float x, float y, int *mx, int *my): converts
local coordinates (i.e., using o coordinates) of a point to global (window) coordinates.

• void Global2Local(GOBJECT o,int mx, int my, float *x, float *y): reverse
of Local2Global

5.2. GRAPHIC CLASSES 81

• void Local2GlobalRect(GOBJECT o,float x, float y, float w, float h, RectType

rectType, int *mx, int *my, int*mw, int*mh): converts local coordinates (i.e.,
using o coordinates) of a rectangle to global (window) coordinates. The type of the
rectangle (see Section 5.1.1) is specified by rectType).

• Global2LocalRect(GOBJECT o,int mx, int my, int mw, int mh, float *x, float

*y, float *w, float *h, RectType rectType): reverse of Global2LocalRect

5.1.4 Useful functions that deal with windows

• char IsWin(GOBJECT o): returns YES if the object is a WINDOW (in which case you
can cast o to the type WINDOW)

• WINDOW GetWin(GOBJECT o): gets the window the object o is in.

5.2 Graphic classes

5.2.1 The GCLASS structure

Again, as for values (VALUE) and graphic objects (GOBJECT), graphic classes in LastWave
“inherit” from the type GCLASS. The type GCLASS is the type which corresponds to a pointer
to a GClass structure. The fields of Gclass you should know about are the following

• GCLASS fatherClass: the graphic class it inherits from (the class att he very top is
theGObjectClass)

• size t nbBytes: the number of bytes for allocation of a graphic object

• unsigned long flags: combination of

– GClassProtected: if set, the class cannot be overdefined (is set by default)

– GClassMoveResize: if set, the graphic objects of that class can be moved and
resized (is set by default)

– GClassLocalCoor: if set, each graphic object has its own local coordinates (is
set by default)

• char *varType: if not NULL this field must correspond to an &type. It means that this
graphic class will be used to display variables of type &type.

• char *info: a description of the graphic class.

Then, there are a set of C-functions that will be fully described in the following sections.

• void (*init) (GOBJECT gobj): C-function for initialization of a graphic object (see
Section 5.2.2)

• void (*deleteContent) (GOBJECT gobj): C-function for desallocation of the con-
tent of a graphic object (the graphic object itself is not freed) (see Section 5.2.3)

• void (*draw) (WINDOW win, GOBJECT gobj, int x, int y, int w, int h): C-
function that specifies how the graphic objects should be drawn (see Section 5.2.4).

82 CHAPTER 5. MANAGING GRAPHICS

• int (*set)(GOBJECT gobj, char *field, char**argv): C-function for managing
fields (see Section 5.2.5)

• char (*msge) (GOBJECT gobj, char *msge, char**argv): C-function for manag-
ing messages (see Section 5.2.6)

• float (*isIn)(GOBJECT gobj,GOBJECT *pobj, int x, int y): C-function that
test wether a point is within a graphic object or not (see Section 5.2.7)

5.2.2 The init function

The init field of GCLASS corresponds to the type

void (*init) (GOBJECT gobj)

This C-function is called right after a graphic object gobj of the corresponding graphic
class is created. It is used to initialize this graphic object.

5.2.3 The deleteContent function

The deleteContent field of GCLASS corresponds to the type

void (*deleteContent) (GOBJECT gobj)

This C-function is called right before the graphic object gobj is deleted. It must delete
any allocation that was made within the graphic object (it must not delete the graphic
object itself!).

5.2.4 The draw function

The draw field of GCLASS corresponds to the type

void (*draw) (WINDOW win, GOBJECT gobj, int x, int y, int w, int h)

This C-function is called whenever a part of the graphic object gobj that belongs to the
window win must be redrawn. The part is specified in absolute (window) coordinates by x,
y, w and h.

A few important things happen before draw is called: Before the draw function of a
graphic object gobj is called

• Depending on the field flagClip of gobj (see Section 5.1.1), the current clipping
rectangle (see Section 5.3.4) might be set to the (absolute coordinate) rectangle of
gobj.

• The rectangle corresponding to gobj is cleared using the background color (i.e., the
field bgColor) of gobj (see Section 5.3.3). If bgColor is invisibleColor nothing
happens

5.2. GRAPHIC CLASSES 83

• The current pen mode (see Section 5.3.1) is set to the penMode field of gobj, the
current pen size (see Section 5.3.1) is set to the penSize field of gobj

• The current line style (see Section 5.3.2) is set to the lineStyle field of gobj

• The current color (see Section 5.3.3) is set to the fg field of gobj

• If the field flagFrame of gobj is set then a rectangle frame is drawn (using the color
fg) corresponding to the rectangle of gobj.

5.2.5 The set function

The set field of GCLASS corresponds to the type

int (*set)(GOBJECT gobj, char *field, char**argv)

This C-function handles setting/getting fields of the graphic object gobj. The result of
that function must be set using the SetResult...() functions (as you do for a command).
If gobj is NULL, then the result must be a string which corresponds to the help on all the
fields. The help string must have the following syntax (it is similar to the syntax of the
help of a command which has actions)

"{{{fieldUsage1} {fieldHelp1}} ...{{fieldUsageN} {fieldHelpN}}}

If gobj is not NULL then field corresponds to the field name (without the - character)
to be set or get and argv is the (NULL terminated) argument list that can be read in the
same way as the argument list of a command (using the Parse... functions). Generally if
there is no argument (i.e., argv[0] is NULL) it means that the result should correspond to
the field value (i.e., the field is get). Otherwise it means it must be set.
If the field is an unknown one then NO should be returned (you can generate an error using
Errorf if the field is known but the syntax is incorrect). If YES is returned it means that
everything went well. In case of a set, if it returns -1 it means that the value of the field
was already set to the same value.

5.2.6 The msge function

The msge field of GCLASS corresponds to the type

char (*msge) (GOBJECT, char *msge, char**argv)

This C-function handles messages sent to the graphic object gobj.
If gobj is NULL, then the result must be a string which corresponds to the help on all the
messages. The help string must have the following syntax (it is similar to the syntax of the
help of a command which has actions)

"{{{msgeUsage1} {msgeHelp1}} ...{{msgeUsageN} {msgeHelpN}}}

84 CHAPTER 5. MANAGING GRAPHICS

If gobj is not NULL then msge corresponds to the msge sent to gobj. argv corresponds to
the (NULL terminated) list of arguments that can be read in the same way as the argument
list of a command (using the Parse... functions). The result of that function must be set
using the SetResult...() functions (as you do for a command).
It should return YES if the message is a valid message and NO if it is an unknown one (you
can generate an error using Errorf if the message is known but the syntax is incorrect).

5.2.7 The isIn function

The isin field of GCLASS corresponds to the type

float (*isIn)(GOBJECT gobj, GOBJECT *pobj, int x, int y)

This C-function is used to test wether the point x,y (in absolute coordinate) is within
the graphic object gobj or not. If it is not it should return a negative number. In any other
cases, pobj should be set to the graphic object the point is closest to. Generally it is gobj,
however, in the case of a GLIST it must be set to the closest graphic object of the GLIST.
If 0 is returned then it means that the point is in the graphic object gobj and LastWave
should not look for any other graphic objects the point could be in. If you return a strictly
positive number, it must correspond to a distance of the point to the graphic object gobj.
LastWave will then search for the closest graphic object.
This routine is generally used to decide which graphic object should receive a mouse event
(in any case, one one object receives the event). LastWave looks for the one which is closest
to the mouse. If a distance of 0 is found, then LastWave sends the event to that object.

5.2.8 Parsing graphic classes: tGCLASS and tGCLASS

In order to write a command that uses a graphic class, you need to be able to parse such
a graphic class. This can be done using the ParseArgv function along with tth tTYPES,
tGCLASS or tGCLASS . You can also use directly one of the parsing functions

• void ParseGClass(char *arg, GCLASS *class)

• char ParseGClass (char *arg, GCLASS def, GCLASS *class)

5.3 Drawing!

5.3.1 The pen

The pen is used for all the drawing procedures. There are 2 pen modes

• PenPlain: regular

• PenInverse: inverse color is used

The current pen mode is set using

void WSetPenMode(WINDOW win, int mode)

5.3. DRAWING! 85

and the pen size using

void WSetPenSize(WINDOW win,int size)

5.3.2 The line style

The line style is used when drawing lines (ellipses, rectangles,...). The line style can be

• LinePlain: solid line

• LineDash: dash line

The current line style is set using

void WSetLineStyle(WINDOW win,int style)

5.3.3 Managing colors and colormaps: tCOLOR, tCOLOR , tCOLORMAP and
tCOLORMAP

In LastWave, both colors and colormaps are represented using the type unsigned long. In
order to parse colormaps and colors you can use the parsing functions

• void ParseColorMap(char *arg, unsigned long *colormap)

• char ParseColorMap (char *arg, unsigned long defVal, unsigned long *colormap)

• void ParseColor(char *arg, unsigned long *color)

• char ParseColor (char *arg, unsigned long defVal, unsigned long *color)

You might need to use the global variables

• unsigned long bgColor: the current background color

• unsigned long fgColor: the current foreground color

• const unsigned long invisibleColor: the transparent color

To test wether a color c is transparent you should use the test (c &invisibleColor)

and not the test (c == invisibleColor).
Some useful functions are

• unsigned long GetColorMapCur(void): returns the current colormap

• char *GetColorMapName (unsigned long cm): get the name of the colormap cm

• int ColorMapSize(unsigned long colorMap) returns the number of colors in a col-
ormap

• char *GetColorName(unsigned long color) returns the name of the color

In order to set the current color (not the foreground color!) that will be used
for all drawing procedure, you must use

• extern void WSetColor(WINDOW win,unsigned long color): sets the color that
will be used when drawing functions are called (this is not the foreground color!)

86 CHAPTER 5. MANAGING GRAPHICS

5.3.4 The clipping rectangle

The current clipping rectangle corresponds to the (rectangle) zone all the drawings will be
happening. You can set/get it using

• void WSetClipRect(WINDOW win, int x, int y, int w, int h);

• void WGetClipRect(WINDOW *win, int *x, int *y, int *w, int *h);

5.3.5 The main drawing functions

These functions use the current pen mode, the current pen size, the current line style and
the current color.

• void WDrawLine(GOBJECT o,float x,float y,float x1,float y1): draw a line
in graphic object o between the points (local coordinates) x,y and x1,y1

• void WDrawPoint(GOBJECT o,float x,float y): draw a point in graphic object
o at (local coordinates) x,y

• void WDrawRect(GOBJECT o,float x,float y,float dx,float dy,char flagSizeIsInPixel,RectType

rectType): draw a rectangle in graphic object o between the points (local coordi-
nates) x,y and x+dx,y+dy. If flagSizeIsInPixel is set then dx and dy are specified
in pixels (not local coordinates). rectType corresponds to the type of rectangle that
will be drawn (as explained in Section 5.1.1).

• void WFillRect(GOBJECT o,float x,float y,float dx,float dy,char flagSizeIsInPixel,RectType

rectType) same as WDrawRect except that the rectangle is filled.

• void WDrawCenteredRect(GOBJECT o,float x,float y,float r1,float r2,char

flagSizeIsInPixel): same as WDrawRect except that the rectangle is centered at
point x,y and has width r1 and height r2.

• void WFillCenteredRect(GOBJECT o,float x,float y,float r1,float r2,char

flagSizeIsInPixel) same as WFillRect except that the rectangle is centered at
point x,y and has width r1 and height r2.

• void WClearRect(GOBJECT o,unsigned long color, float x,float y,float dx,float

dy,char flagSizeIsInPixel,RectType rectType): same as WDrawRect except that
the color color is used.

• void WDrawEllipse(GOBJECT o,float x,float y,float dx,float dy,char flagSizeIsInPixel,RectType

rectType): same as WDrawRect except that an ellipse is drawn instead of a rectangle.

• void WFillEllipse(GOBJECT o,float x,float y,float dx, float dy, char flagSizeIsInPixel,RectType

rectType): same as WDrawEllipse except that the ellipse is filled.

• void WDrawCenteredEllipse(GOBJECT o,float x,float y,float r1,float r2,char

flagSizeIsInPixel): same as WDrawCenteredRect except that an ellipse is drawn
instead of a rectangle.

5.4. ADDING A NEW GRAPHIC CLASS USING THE C-LANGUAGE 87

• void WFillCenteredEllipse(GOBJECT o,float x,float y,float r1, float r2,char

flagSizeIsInPixel): same as WFillCenteredRect except that an ellipse is drawn
instead of a rectangle.

• void WDrawCenteredCross(GOBJECT o,float x,float y,float r,char flagSizeIsInPixel):
same as WDrawCenteredRect except that a cross is drawn (r1 and r2 are both equal
to r)

5.3.6 Drawing images

To draw an image, you must follow the following points

• Allocate the current pixmap using void WInitPixMap(int nRows, int nCols).

• Decide which colormap will be used (we will call it cm)

• Get the size of cm using size = ColorMapSize(cm);

• Loop on each point of the image and set the corresponding color using void WSetPix-
elPixMap(int colNumber, int rowNumber, unsigned long color) where color is equal
to n+cm where n is an unsigned integer in the range [0,size[that specifies which
color of the colormap cm must be used (the colors are indexed from the first one to
the last one).

• At the end of the loop you must call WDisplayPixMap(WINDOW win,int x,int y)

where win is the window the image will be displayed in and x,y the (window) coor-
dinate it will be displayed at.

5.4 Adding a new graphic class using the C-Language

Ok, it’s time to build a new graphic class! We will show how to do it on a specific example.
We build a graphic class for display the CIRCLES value that was previously defined (see
Section 4).

5.4.1 The creation of the graphic class

We must add a line in the load function of the package in order to define the new graphic
class. We will call a function DefineGraphCircles() that we will have to write. Thus the
load function becomes

static void LoadCirclesPackage(void)

{

tCIRCLES = AddVariableTypeValue(circlesType, &tsCircles, NULL);

tCIRCLES_ = tCIRCLES+1;

DefineGraphCircles();

AddCProcTable(&circlesTable);

}

88 CHAPTER 5. MANAGING GRAPHICS

The DefineGraphicClass() will create a new graphic class corresponding to the graphic
objects called GraphCircles. The definition of this structure is

typedef struct graphCircles {

GObjectFields;

CIRCLES circles; /* The CIRCLES to be displayed */

unsigned long fillColor; /* the color used to fill the circles */

} GraphCircles, *GRAPHCIRCLES;

(Let us note that you cannot use the bgColor field of the graphic object to store the color
used for filling the circles since LastWave clears the object rectangle using the bgColor

color).
To create the corresponding class, we need to use the NewGClass() function. This func-
tion returns a GCLASS which main fields (see Section 5.1.1) must be filled up. The final
DefineGraphicClass() looks like

void DefineGraphCircles(void)

{

theGraphCirclesClass = NewGClass("GraphCircles",theGObjectClass,"circles");

theGraphCirclesClass->nbBytes = sizeof(GraphCircles);

theGraphCirclesClass->init = _InitGraphCircles;

theGraphCirclesClass->deleteContent = _DeleteContentGraphCircles;

theGraphCirclesClass->set = _SetGraphCircles;

theGraphCirclesClass->draw = _DrawGraphCircles;

theGraphCirclesClass->isIn = _IsInGraphCircles;

theGraphCirclesClass->varType = circlesType;

theGraphCirclesClass->flags &= ~(GClassMoveResize+GClassLocalCoor);

theGraphCirclesClass->info = "Graphic Class that allows to display circles";

}

The line

theGraphCirclesClass->flags &= ~(GClassMoveResize+GClassLocalCoor);

ensures that the corresponding gobjects will not be allowed to be moved or resized (they will
be displayed in a VIEW, just setting the bounding rectangle of the view will allow zooming)
and that no local coordinates are associated to this object (the VIEW coordinates it is in
will be used). We need to define the different methods.

5.4.2 The init function

/* Initialization of the GraphCircles structure */

static void _InitGraphCircles(GOBJECT o)

{

GRAPHCIRCLES graph;

5.4. ADDING A NEW GRAPHIC CLASS USING THE C-LANGUAGE 89

graph = (GRAPHCIRCLES) o;

graph->circles = NULL;

graph->fillColor = graph->bgColor = invisibleColor;

/* We increase the rectangle by 1 on each side to avoid clipping problems on the rectangle boundary */

graph->rectType.left = graph->rectType.right = graph->rectType.bottom = graph->rectType.top = 1;

}

5.4.3 The deleteContent function

static void _DeleteContentGraphCircles(GOBJECT o)

{

GRAPHCIRCLES graph;

graph = (GRAPHCIRCLES) o;

if (graph->circles != NULL) DeleteCircles(graph->circles);

}

5.4.4 The draw function

static void _DrawGraphCircles (WINDOW win, GOBJECT obj, int x, int y,int w,int h)

{

GRAPHCIRCLES graph;

GOBJECT o1;

CIRCLES c;

float x0,y0,x1,y1;

unsigned long fg,fill;

int i;

/* Some inits */

graph = (GRAPHCIRCLES) obj;

c = graph->circles;

if (c == NULL) return;

if (c->n == 0) return;

fg = graph->fgColor;

fill = graph->fillColor;

o1 = (GOBJECT) obj->father;

for (i=0;i<c->n;i++) {

if (fill != invisibleColor) {

WSetColor(win,fill);

WFillEllipse(obj,c->array[i].x-c->array[i].r,c->array[i].y-c->array[i].r,2*c->array[i].r,2*c->array[i].r,NO,LargeRect);

90 CHAPTER 5. MANAGING GRAPHICS

}

WSetColor(win,fg);

WDrawEllipse(obj,c->array[i].x-c->array[i].r,c->array[i].y-c->array[i].r,2*c->array[i].r,2*c->array[i].r,NO,LargeRect);

}

}

Let us note that we could optimze this procedure by only drawing what intersects the
rectangle x,y,w,h.

5.4.5 The set function

In order the disp command to be able to deal with circles, the graphic class must implement
2 fields:

• the graph field (read and write field), which must corresponds to the correspnding
CIRCLES (should return a VALUE)

• the rect field (read only) must return a listv of the (local coordinates) rectangle which
bounds the CIRCLES object. By default the rect field is a field of any graphic object.
It returns the fields rx,ry,rw,rh (see Section 5.1.1). If we wanted to keep this default
behavior, we would need to update the fields rx,ry,rw,rh as soon as the CIRCLES

is changed. This is very heavy to write. A very simple way to avoid that (though it
results in longer computations) is to recompute the bounding rectangle each time it
is asked for. Thus we are going to overwrite the default rect field so that it computes
the bounding rectangle, stores it in rx,ry,rw,rh and return it.

The functio to compute the bounding rect is

void _GetCirclesBound(CIRCLES c,float *x,float *y,float *w,float *h)

{

int i;

float f,x1,x2,y1,y2;

if (c == NULL || c->n == 0) {

*x = *y = *w = *h = 0;

return;

}

x1 = FLT_MAX;

x2 = FLT_MIN;

y1 = FLT_MAX;

y2 = FLT_MIN;

for (i=0;i<c->n;i++) {

f = c->array[i].x-c->array[i].r;

x1 = MIN(x1,f);

f = c->array[i].x+c->array[i].r;

x2 = MAX(x2,f);

5.4. ADDING A NEW GRAPHIC CLASS USING THE C-LANGUAGE 91

f = c->array[i].y-c->array[i].r;

y1 = MIN(y1,f);

f = c->array[i].y+c->array[i].r;

y2 = MAX(y2,f);

}

*x = x1;

*y = y1;

*w = x2-x1;

*h = y2-y1;

}

and the set function is

static int _SetGraphCircles (GOBJECT o, char *field, char**argv)

{

GRAPHCIRCLES graph;

CIRCLES c;

char *str;

int i;

LISTV lv;

/* The help command */

if (o == NULL) {

SetResultStr("{{{graph [<circles>]} {Gets/Sets the circles object to be displayed by the GraphCircles. (The ’-cgraph’ field \

is equivalent to that field).}} \

{{fill [<color>]} {Sets/Gets the color that will be used to fill up the circles.}}}");

return(YES);

}

graph = (GRAPHCIRCLES) o;

c = graph->circles;

/* the ’graph’ and ’cgraph’ fields */

if (!strcmp(field,"graph") || !strcmp(field,"cgraph")) {

if (*argv == NULL) {

SetResultValue(c);

return(YES);

}

argv = ParseArgv(argv,tCIRCLES,&c,0);

if (c->n == 0) Errorf("_SetGraphCircles() : You cannot display an empty ’circles’");

if (graph->circles != NULL) DeleteCircles(graph->circles);

graph->circles = c;

AddRefValue(c);

_GetCirclesBound(c,&(o->rx),&(o->ry),&(o->rw),&(o->rh));

UpdateGlobalRectGObject(o);

return(YES);

92 CHAPTER 5. MANAGING GRAPHICS

}

/* The ’fill’ field */

if (!strcmp(field,"fill")) {

if (*argv == NULL) {

SetResultStr(GetColorName(graph->fillColor));

return(YES);

}

argv = ParseArgv(argv,tCOLOR,&(graph->fillColor),0);

return(YES);

}

/* The ’rect’ field */

if (!strcmp(field,"rect")) {

NoMoreArgs(argv);

_GetCirclesBound(c,&(o->rx),&(o->ry),&(o->rw),&(o->rh));

UpdateGlobalRectGObject(o);

lv = TNewListv();

SetResultValue(lv);

AppendFloat2Listv(lv,o->rx);

AppendFloat2Listv(lv,o->ry);

AppendFloat2Listv(lv,o->rw);

AppendFloat2Listv(lv,o->rh);

return(YES);

}

return(NO);

}

5.4.6 The isIn function

static float _IsInGraphCircles(GOBJECT o, GOBJECT *o1, int x, int y)

{

float rx, ry;

GRAPHCIRCLES g;

int i;

CIRCLES c;

g = (GRAPHCIRCLES) o;

c = g->circles;

*o1 = NULL;

/* Get the local coordinate */

5.5. MANAGING DISP RELATED SCRIPTS FOR THE NEW GRAPHIC CLASS 93

Global2Local(o,x,y,&rx,&ry);

/* is this point in a circle ? */

for (i=0;i<c->n;i++) {

if ((c->array[i].x-rx)*(c->array[i].x-rx)+(c->array[i].y-ry)*(c->array[i].y-ry) < c->array[i].r*c->array[i].r) {

*o1 = o;

return(0);

}

}

return(-1);

}

5.5 Managing disp related scripts for the new graphic class

In order to load script files when the package circles is loaded you just need to create a
directory circles in the script directory and create in it a file called circles.pkg. This
file will be automatically executed when the package is loaded. In this file we suggest you
should do the following

5.5.1 disp windows

When a window will be used to display &circles, the disp function looks for the variable
disp.circles.rect which tells what the default position and size of the window should
be. So in the file circles.pkg you can type

disp.circles.rect={20 55 330 330}

5.5.2 Managing the zoom

If you want to inherit from the zoom script system of LastWave when circles are displayed,
it is extremely simple. You need to use the script command

SetZoomBindings gclass listv of modes

where gclass is the (non evaluated) graphic class the zoom should be performed on
and the modes are to be chosen among the strings "rect" (a rectangle is specified with the
mouse), "xrect" (same as ”rect” but the width is contrained to the whole width), "yrect"
(same as ”rect” but the height is contrained to the whole height) and "normal" (same
behavior as the default behavior for signals, i.e., using left/right/middle button). The z

key will allow to change mode. Thus we can write in the file circles.pkg

SetZoomBindings GraphCircles \{’rect’ ’xrect’ ’yrect’\}

5.5.3 Managing the cursor

If you want to inherit from the cursor script system of LastWave when circles are displayed,
it is extremely simple. You need to use the script command

94 CHAPTER 5. MANAGING GRAPHICS

SetCursorBindings gclass listv of commands

where gclass is the (non evaluated) graphic class the cursor should operate on and the
commands are the commands that are called each time the mouse is moved and that should
return the string that is displayed at the bottom of the window. A simple command that
would return some information to be displayed at the bottom of the window could be.

setproc _CursorTextGraphCircles {} {

c = [setg @object -graph]

sprintf id "%v" c

return "$@objname ($id): $@x $@y"

}

The procedures that are passed in the listv of procedures of the SetCursorBindings com-
mand must have one (&array) argument named cursor. After drawing the cursor you need
to specify in the variable cursor.erase the script that should be called to erase the cursor.
To help you drawing cross-hair style cursors, you can use the ViewDrawCrossHair script
procedure. Thus a simple cross hair procedure will look like

setproc _DrawCursorGraphCircles {cursor} {

_ViewDrawCrossHair cursor.view @x @y

cursor.erase = %%‘_ViewDrawCrossHair ’$cursor.view’ $@x $@y‘

return [_CursorTextGraphCircles]

}

A procedure that would draw nothing would be

setproc _DrawCursorNoneGraphCircles {cursor} {

cursor.erase=null

return [_CursorTextGraphCircles]

}

and a procedure that would draw a cross-hair cursor centered at the center of the closest
circle would be

setproc _DrawCursor1GraphCircles {cursor} {

c = [setg @object -graph]

i = [circles closest c @x @y]

x = c.x[i]

y = c.y[i]

_ViewDrawCrossHair cursor.view x y

cursor.erase = %%‘_ViewDrawCrossHair ’$cursor.view’ $x $y‘

return "$@objname : $x $y [index = $i] "

}

where the circles closest command is defined by

5.5. MANAGING DISP RELATED SCRIPTS FOR THE NEW GRAPHIC CLASS 95

void C_Circles(char **argv)

{

CIRCLES c;

char *action;

float x,y,dist,d;

int i,i0;

argv = ParseArgv(argv,tWORD,&action,tCIRCLES,&c,-1);

if (!strcmp(action,"closest")) {

argv = ParseArgv(argv,tFLOAT,&x, tFLOAT,&y,0);

dist = FLT_MAX;

i0 = -1;

for (i=0;i<c->n;i++) {

d = (c->array[i].x-x)*(c->array[i].x-x)+(c->array[i].y-y)*(c->array[i].y-y);

if (d<dist) {

i0 = i;

dist = d;

}

}

SetResultInt(i0);

return;

}

Errorf("Unknown action ’%s’",action);

}

static CProc circlesCommands[] = {

"circles",C_Circles,"{{{closest <circles> <x> <y>} \

{Gets the index of the closes circle}}}",

NULL,NULL,NULL

};

static CProcTable circlesTable = {circlesCommands, "circles", "Commands related to circles"};

Thus finally, you should put in the circles.pkg file

SetCursorBindings GraphCircles {%_DrawCursorNoneGraphCircles %_DrawCursorGraphCircles %_DrawCursor1GraphCircles}

5.5.4 Let’s play around with circles!

This is an example of what you can do with the circles package

> package load ’circles’

> c = [new &circles]

= <&circles[0];0x090fe300>

96 CHAPTER 5. MANAGING GRAPHICS

> c.n=10

= 10

> c

= <&circles[10];0x090fe300>

> c.r = abs(Grand(10))

= <size=10;0.287257,0.0415209,1.28227,0.0587326,0.189727,1.18633,...>

> c.x = 0:9

= <size=10;0,1,2,3,4,5,...>

> c.y = 2*c.x

= <size=10;0,2,4,6,8,10,...>

> disp c -..1 -fill ’blue’

Play around with the mouse, zooming. . . Try to hit the c key for changing cursor mode
and z for changinng zoom mode. You can display signals on top of circles using the disp

command... and many more!

