Майлз Рид 
Автор, известный английский математик, поставил себе целью преодолеть страх математиков перед алгебраической геометрией, подобный страху нематематиков перед математикой. Примеры, задачи, рисунки и мотивировки занимают в книге больше места, чем формальный аппарат теории. Автор осторожно доводит читателя до содержательных результатов теории проективных алгебраических многообразий и оставляет его после критического обсуждения обобщений и обоснований (пучки, схемы и т. п.). Секреты специалистов, обычно сообщаемые лишь ученикам наедине, опубликованы здесь в открытую.
Для математиков
всех специальностей от студентов-младшекурсников до алгебраических геометров, а
также физиков-теоретиков.
§ 0.
Неформальное введение                                                                                      8
Почему же
алгебраическая геометрия? Проблема выбора материала; различные  геометрические  категории, необходимость привлечения коммутативной алгебры,
частично определенная функция; репутация автора. Необходимые предварительные
сведения, взаимоотношение курса с различными предметами, список рекомендуемых
книг.
 
§ 1. Плоские
коники                                                                                                    16
Общее представление
о Р2 и однородных координатах; соотношение между А2 и Р2;
параметризация. Каждая гладкая коника в Р2 изоморфна Р1.
Простые случаи теоремы Безу: прямая пересекает кривую степени d в d точках, коника пересекает кривую степени d, в 2d точках. Линейная система коник, проходящих через точки Р1,...,Pn.
§ 2. Кубики и групповой
закон                                                                                  32
Кривая (у2=х(х-1)(х-l)) не может быть
рационально параметризована. Линейные системы Sd(Р1,...,Рn), пучок кубик, проходящих через 
8 точек «в общем положении». Групповой закон на  кубике. «Таинственная» гексаграмма Паскаля.
Добавление к гл. 1. Кривые и их род                                                                        48
Топология неособых плоских комплексных кубик. Неформальное обсуждение рода кривой: топология, дифференциальная геометрия, модули, теория чисел, Морделл—Вейль—Фальтингс.
 
§ 3. Аффинные
многообразия и Nullstellensatz                                                        54
Нётеровы кольца, теорема Гильберта о базисе; соответствия V и I, неприводимые алгебраические множества, топология Зарисского, формулировка Nullstellensatz. Неприводимая гиперповерхность. Нормализация Нётер и доказательство Nullstellensatz, редукция к случаю гиперповерхности.
§ 4. Функции на
многообразиях                                                                                73
Координатное кольцо и полиномиальные отображения, морфизмы и изоморфизмы, аффинные многообразия. Поле рациональных функций и рациональные отображения, доминантные рациональные отображения и композиция рациональных отображений. Стандартные открытые множества. Закон сложения на эллиптической кривой является морфизмом.
 
§ 5. Проективная
и бирациональная геометрии                                                      88
Мотивировка: существуют многообразия, не содержащиеся ни в каком аффинном многообразии. Однородные соответствия V и /. Проективное и аффинное. Примеры: квадратичные поверхности, поверхность Веронезе, Бирациональная эквивалентность, рациональные многообразия. Каждое многообразие бирационально эквивалентно гиперповерхности. Произведения.
§ 6. Касательное
пространство и неособость, размерность                                 102
Мотивировка: теорема о неявной функции, многообразия и гладкие многообразия. Определение аффинного касательного пространства. Множество неособых точек является плотным. Касательное пространство и т/т2, инвариантное определение касательного пространства. Размерность X равна tr degkk(X). Разрешение особенностей с помощью раздутий.
§ 7. 27 прямых на кубической поверхности                                                           112
Прямые на неособой кубической поверхности 5. Доказательство существования прямой методом исключения. Пять пар прямых, пересекающих данную прямую. S рациональна. Классическая конфигурация из 27 прямых. Гессиан. Случай, когда все прямые рациональны.
§8. Заключительные комментарии                                                                         125
История и социологический аспект. Выбор тем, высоконаучные комментарии и технические замечания. Вместо предисловия. Благодарности.
Предметный указатель                                                                                             143