§ 147. Абсолютная звездная величина и светимость звезд

 

Видимые звездные величины ничего не говорят ни об общей энергии, излучаемой звездой, ни о яркости ее поверхности. Действительно, вследствие различия в расстояниях маленькая, сравнительно холодная звезда только из-за своей относительно большой близости к нам может иметь значительно меньшую видимую звездную величину (т.е. казаться ярче), чем далекий горячий гигант.

Если расстояния до двух звезд известны (см. § 63), то на основании их видимых звездных величин легко найти отношение излучаемых ими действительных световых потоков. Для этого достаточно освещенности, создаваемые этими звездами, отнести к общему для всех звезд стандартному расстоянию. В качестве такого расстояния принимается 10 пс.

Звездная величина, которую имела бы звезда, если ее наблюдать с расстояния в 10 пс, называется абсолютной звездной величиной. Как и видимые, абсолютные звездные величины могут быть визуальными, фотографическими и т.д.

Пусть видимая звездная величина некоторой звезды равна m, а расстояние ее от наблюдателя составляет r пс. По определению, звездная величина с расстояния 10 пс будет раина абсолютной звездной величине М. Применяя к m и М формулу (7.8), получим

(11.2)

где Е и Е0соответственно освещенности от звезды с расстояния r пс и 10 пс. Поскольку освещенности обратно пропорциональны квадратам расстояний, то

(11.3)

Подставляя (11.3) в (11.2), получим

0,4(mM) = 2 lg r2

(11.4)

 

или

M = m + 5 — 5 lg r.

(11.5)

Формула (11.5) позволяет найти абсолютную звездную величину М, если известна видимая звездная величина объекта m и расстояние до него r, выраженное в парсеках. Если же абсолютная звездная величина известна из каких-нибудь других соображений, то, зная видимую звездную величину, легко найти выраженное в парсеках расстояние из условия

lg r = 1 + 0,2 (m — M).

(11.6)

Величина (m — М) называется модулем расстояния.

Так как годичный параллакс p светила и расстояние r до него в парсеках связаны соотношением r = 1/p  (см. § 63), то формулу (11.6) можно привести к другому виду:

M = m + 5 + 5 1g p.

(11.7)

В качестве примера найдем абсолютную визуальную звездную величину Солнца, видимая визуальная звездная величина которого т¤ = —26m,8 (см. § 103). Расстояние до Солнца  Подставляя  m¤ и lg r¤ в формулу (11.5), получаем

При определении звездной величины (например, визуальной) непосредственно из наблюдений регистрируется только та часть излучения, которая прошла сквозь земную атмосферу, данную оптическую систему и зарегистрирована светочувствительным прибором. Чтобы найти суммарное излучение во всем спектре, необходимо к результатам этих измерений прибавить поправку, Учитывающую излучение, не дошедшее до прибора. Звездная величина, определенная с учетом излучения во всех участках спектра, называется болометрической.

Разность между болометрической звездной величиной и визуальной или фотовизуальной называется болометрической поправкой

(11.8)

Болометрические поправки вычисляются теоретически. В самое последнее время для этой цели привлекаются результаты внеатмосферных измерений излучения звезд в ультрафиолетовой области спектра.

Болометрическая поправка имеет минимальное значение для тех звезд, которые в видимой области спектра излучают наибольшую долю всей своей энергии, и зависит от эффективной температуры звезды (табл. 10).

 

ТАБЛИЦА 10

 

Болометрические поправки позволяют определить болометрические светимости тех звезд, для которых известны абсолютные визуальные звездные величины.

Пусть Mv   абсолютная визуальная звездная величина некоторой звезды, а Dmbol  — болометрическая поправка. Тогда болометрическая абсолютная величина звезды

(11.9)

Применим эту формулу к Солнцу, болометрическую поправку для которого примем, округляя значение из табл. 10:

Так как абсолютная визуальная звездная величина Солнца  его болометрическая абсолютная звездная величина

Поток энергии излучаемой звездой по всем направлениям, называется светимостью. Между светимостями L и абсолютными звездными величинами должно выполняться то же соотношение, что и между Е и m в формуле (7.8). Поэтому если обозначить величины, относящиеся к Солнцу и к какой-либо звезде, соответственно значками ¤ и *, то получим

(11.10)

Обычно светимость выражают в единицах светимости Солнца, т.e. L¤ = 1 и

(11.11)

В зависимости от метода определения звездных величин, входящих в эту формулу, получаем визуальные, фотографические или болометрические светимости. Для болометрических светимостей, подставляя значение  и учитывая (11.9), имеем

(11.12)