§ 150. Методы определения размеров звезд

 

Непосредственные измерения радиусов звезд, за некоторыми исключениями, практически невозможны, так как все звезды настолько далеки от нас, что их угловые размеры меньше предела разрешения крупнейших телескопов. Угловые диаметры двух-трех десятков ближайших звезд определены с помощью специальных звездных интерферометров. Принцип работы этих приборов основан на интерференции света звезды, отраженного парой широко расставленных зеркал. В отдельных случаях для определения углового диаметра звезды удается использовать вид интерференционной картины, возникающей во время покрытия звезд Луной. Линейные радиусы можно определить у затменно-переменных звезд по продолжительности затмения (см. § 156).

Если для звезды с известным расстоянием r найден каким-либо из описанных методов угловой диаметр d", выраженный в секундах дуги, то ее линейный поперечник D может быть легко вычислен по формуле

(11.13)

Косвенным путем размеры звезды могут быть найдены в том случае, если известна ее болометрическая светимость Lbol и эффективная температура Teff. Действительно, согласно определению эффективной температуры (§ 108) 1 см2 поверхности звезды излучает по всем направлениям поток энергии, равный

Полный поток, излучаемый всей звездой, получится, если умножить эту величину на площадь поверхности звезды 4pR2. Следовательно, светимость звезды

(11.14)

Если теперь применить полученное выражение к Солнцу, светимость и радиус которого нам известны, то получим, обозначая через T ¤ эффективную температуру Солнца,

(11.15)

Деля почленно равенства (11.14) и (11.15), находим

(11.16)

или, логарифмируя,

Обычно радиус и светимость звезды выражают в солнечных единицах R¤ = 1 и L¤ = 1. Тогда

(11.17)

Поперечники самых крупных звезд в 1000 и более раз превосходят солнечный (у VV Сер в 1600 раз). Звезда, открытая Лейтеном в созвездии Кита, в 10 раз меньше Земли по диаметру, а размеры нейтронных звезд (§ 159) порядка десяти километров.